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ABSTRACT

Appearance-based gaze estimation is promising for unconstrained

real-world se�ings, but the significant variability in head pose

and user-camera distance poses significant challenges for training

generic gaze estimators. Data normalization was proposed to can-

cel out this geometric variability by mapping input images and

gaze labels to a normalized space. Although used successfully in

prior works, the role and importance of data normalization remains

unclear. To fill this gap, we study data normalization for the first

time using principled evaluations on both simulated and real data.

We propose a modification to the current data normalization for-

mulation by removing the scaling factor and show that our new

formulation performs significantly be�er (between 9.5% and 32.7%)

in the different evaluation se�ings. Using images synthesized from

a 3D face model, we demonstrate the benefit of data normalization

for the efficiency of the model training. Experiments on real-world

images confirm the advantages of data normalization in terms of

gaze estimation performance.
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1 INTRODUCTION

Driven by advances in deep learning and large-scale training im-

age synthesis, appearance-based gaze estimation methods have
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Figure 1: Data normalization, as proposed for appearance-

based gaze estimation, cancels out most variations caused

by different head poses, by rotating and scaling the images.

recently received increased a�ention due to their significant po-

tential for real-world applications [Smith et al. 2013; Sugano et al.

2016; Zhang et al. 2018, 2017a,b]. In contrast to their model- and

feature-based counterparts [Hansen and Ji 2010; Sesma et al. 2012;

Stiefelhagen et al. 1997; Valenti et al. 2012; Venkateswarlu et al.

2003; Wang and Ji 2017; Yamazoe et al. 2008], appearance-based

methods aim to directly map eye images to gaze directions, for ex-

ample obtained using front-facing cameras already integrated into

mobile devices [Kra�a et al. 2016]. Early methods for appearance-

based gaze estimation required a fixed head pose, e.g. enforced

using a chin rest [Schneider et al. 2014; Tan et al. 2002; Williams

et al. 2006]. While later works allowed for free head rotation [Deng

and Zhu 2017; Funes Mora et al. 2014; He et al. 2015; Yu et al. 2016],

the distance between user and camera was usually still assumed

to be fixed and methods were mainly evaluated in controlled set-

tings. Most recent works focused on the most challenging case, i.e.

real-world environments without any constraints regarding head

rotation and translation [Kra�a et al. 2016; Zhang et al. 2017, 2018].

In principle, given a sufficient amount of training data, the vari-

ability caused by unconstrained head pose could be learned from

the data. Previous works following this idea consequently focused

on significantly increasing the number and diversity of images

to train the appearance-based gaze estimator [Kra�a et al. 2016;

Zhang et al. 2018]. While this approach resulted in significant per-

formance improvements, manual collection and annotation of such

large amounts of training data is time-consuming and costly. To
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reduce the burden of manual data collection, another recent line of

work instead proposed to synthesize large numbers of eye images

with arbitrary head poses using sophisticated 3D models of the

eye region [Wood et al. 2016a,b, 2015]. However, for both of these

approaches, covering all possible head poses is nearly impossible.

In addition, this approach requires the gaze estimator to deal with

a large amount of very similar and mostly redundant data and can

result in prolonged training times and more difficult optimization

of the loss function.

Data normalization has been proposed to address the aforemen-

tioned challenge by reducing the training space and making the

training more efficient. �is is achieved by preprocessing the train-

ing data before it is used as input to the gaze estimator. As shown

in Figure 1, the key idea is to normalize the data such that most of

the variability caused by different head poses is canceled out. Orig-

inally proposed by Sugano et al. [Sugano et al. 2014], this approach

has subsequently been used very successfully in other works [Shri-

vastava et al. 2017a; Zhang et al. 2015, 2017, 2018]. In a nutshell,

data normalization first rotates the camera to warp the eye images

so that the x-axis of the camera coordinate system is perpendicular

to the y-axis of the head coordinate system. �en, the image is

scaled so that the (normalized) camera is located at a fixed distance

away from the eye center. �e final eye images have only 2 degrees

of freedom in head pose for all the different data.

Although used successfully in prior works, the importance of

rotation and translation/scaling of data normalization remains un-

clear, and has not yet its impact on the gaze estimation performance

been quantified. In this work we aim to fill this gap and, for the first

time, explore the importance of data normalization for appearance-

based gaze estimation. �e specific contributions of this work are

two-fold. First, we explain the variability caused by different dis-

tances between camera and eye and discuss how data normalization

can cancel out some of this variability. Second, we demonstrate

the importance of data normalization for appearance-based gaze

estimation with extensive experiments on both synthetic and real

data. We first perform gaze estimation evaluations on synthesized

eye images for different head poses to demonstrate the benefit of

applying data normalization. A�erwards, we evaluate within- and

cross-dataset se�ings for gaze estimation and quantify the advan-

tages of data normalization with respect to performance. �ird, we

propose a modification to the original data normalization formula-

tion and demonstrate that this new formulation yields significant

performance improvements for all evaluation se�ings studied.

2 RELATED WORK

Our work is related to previous works on 1) appearance-based gaze

estimation, 2) methods to deal with head pose variability during

gaze estimation, and 3) data normalization.

2.1 Appearance-Based Gaze Estimation

Methods for appearance-based gaze estimation aim to directly

learn a mapping from eye images to gaze directions. Appearance-

based methods are promising because they can be used with low-

resolution images, and for long distances between camera and user,

given that they do not require explicit eye feature detection. While

early works in appearance-based gaze estimation assumed a fixed

head pose [Baluja and Pomerleau 1994; Sewell and Komogortsev

2010; Tan et al. 2002], later works specifically focused on allowing

for free head rotation [Choi et al. 2013; Funes Mora and Odobez

2012; Lu et al. 2012; Sugano et al. 2008]. �ese days, free head

movement has become a standard requirement for gaze estimation.

Consequently, most recent gaze estimation datasets include signifi-

cant variability in head pose, both with real-world imagery [Deng

and Zhu 2017; Funes Mora et al. 2014; Kra�a et al. 2016; Smith

et al. 2013; Zhang et al. 2018] and synthetic data [Shrivastava et al.

2017b; Sugano et al. 2014; Wood et al. 2015]. Several recent works

proposed to learn pose-independent gaze estimators by exploiting

large amounts of labeled training data [Shrivastava et al. 2017b;

Sugano et al. 2014; Zhang et al. 2017].

2.2 Dealing with Head Pose Variability

Most previous works directly cropped the eye images without any

pre-processing, assuming that the model would learn the head pose

variability from the training data without additional supervision.

Huang et al. used a Haar feature detector to crop the eye images

and resized them before gaze estimation training [Huang et al.

2017]. Kra�a et al. cropped eyes and face according to landmark

detectors and encoded the face size and position as a face grid,

which indicated the head position and distance between camera and

face [Kra�a et al. 2016]. Deng et al. used a head CNN to learn the

head pose explicitly from face images to compensate the estimated

gaze direction from eye images [Deng and Zhu 2017]. Instead of

adding explicit information on face distance or head pose, other

works aimed to cancel out variability in head pose using geometric

transformations. For example, Lu et al. rotated and translated the

camera and then proposed the single-directional pixel flow model

to generate the eye image accordingly [Lu et al. 2015]. Mora et

al. obtained the frontal face image from a 3D face mesh, which

effectively inverted rigid transformations in head pose [Funes Mora

and Odobez 2012]. However, all of these methods have additional

requirements, such as calibrated eye image [Lu et al. 2015] or a

3D face mesh [Funes Mora and Odobez 2012], and they did not

consider the most challenging, but practically also most relevant,

task of evaluating gaze estimators across different datasets.

2.3 Data Normalization

Sugano et al. proposed a data normalization process to transform

eye images and gaze directions into a normalized space to facilitate

synthesis of eye images from a 3D face mesh with arbitrary head

poses [Sugano et al. 2014]. �ese synthesized images were then

used for gaze estimation. �eir basic idea was to rotate and trans-

late the camera to a fixed distance from the eye and to adjust the

gaze direction accordingly. Given that images in that normalized

space shared the same intrinsic and extrinsic camera parameters,

the gaze estimator could be trained and tested in this normalized

space. �at original data normalization was successfully used in

several subsequent works and was key to facilitate cross-dataset

evaluations of appearance-based gaze estimation methods [Shrivas-

tava et al. 2017a; Wood et al. 2015; Zhang et al. 2018]. Later works

demonstrated that such data normalization could also be used to

adapt gaze estimators trained in one se�ing to new se�ings, for

example to estimate audience a�ention on public displays [Sugano
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Figure 2: Visualization of head rotation factor. Le�: face

image and corresponding cropped eye images with nearly

non-rotated head pose. Right: face image and correspond-

ing cropped eye images with head pose rotation.

et al. 2016], to detect eye contact independent of the target object

type and size, camera position, or user [Müller et al. 2018; Zhang

et al. 2017b], or to train person-specific gaze estimators from user

interactions across multiple devices [Zhang et al. 2018].

Although data normalization was successfully used in different

prior works, it was mainly used to align the training and test data,

and its advantage of making the learning-based approach more ef-

ficient has not yet been discussed. Also, a principled comparison of

gaze estimation performance with and without data normalization

is still missing from the current literature.

3 DATA NORMALIZATION

Data normalization aims to align training and test data for learning-

based gaze estimation by reducing the variability caused by head

rotation and translation. In this section, we first demonstrate the

problem se�ing and discuss why data normalization is needed for

canceling out such variability. We describe the detailed process

of data normalization presented in prior work [Sugano et al. 2014;

Zhang et al. 2018], and point out an issue when handling 2D images.

We then introduce our modification on data normalization with a

stronger planarity assumption.

3.1 Problem Setting

As discussed earlier, most previous methods on appearance-based

gaze estimation assume a frontal head pose, as shown on the le�

in Figure 2. However, in real-world se�ings we need to deal with

head rotation, as shown on the right in Figure 2. �e corresponding

eyes are shown above the face image in Figure 2, and the goal of a

pose-independent gaze estimator is to estimate 2D gaze positions

or 3D gaze directions of eye images no ma�er how they appear in

the original input images.

In addition, precisely speaking, scale/distance of the face also

affects the eye appearance. Different distances between camera

and eye obviously result in different sizes of eye in the captured

images, and the eye appearance itself changes because the eye is

not a planar object.

d

2d

Scaled

Resized

(a)

(b)

(c)

(d)
Shifted

Figure 3: Visualization of distance factor. Eye image (b) is

taken at distance d from the camera, and eye image (b) is

shi�ed to distance 2d with half the size of (a). Eye images (c)

and (d) are the eye images scaled and resized from (a). We

calculate the image differences between (b) shi�ed and (d)

resized, and (c) scaled and (d) resized, by subtracting each

and normalizing the difference pixel values. Even though

it is visually hard to tell, there is an appearance difference

between the shi�ed and resized eye image.

Figure 3 illustrates the effect of distance using a 3D eye region

model from the UT Multiview dataset [Sugano et al. 2014]. We

capture two eye images at two different distances between eye

and camera (Figure 3a and Figure 3b). Closer distance (Figure 3a)

naturally results in a larger image resolution, and usually image-

based methods resize 2D input images (Figure 3d) so that they

have the same resolution size. In this case, although Figure 3a and

Figure 3b have the same 3D gaze direction, resized image Figure 3d

and further distance image Figure 3b have slightly different image

appearances. If we physically scale the 3D space by, e.g., changing

the focal length (Figure 3c), the appearance difference between

scaled (Figure 3c) and resized images (Figure 3d) is much smaller.

�is illustrates that image resizing is equivalent to 3D scaling rather

than 3D shi�ing. It is important to precisely discuss the image

resizing operation in data normalization.

Pose-independent learning-based methods need to handle these

factors causing appearance changes during training processes. How-

ever, practically speaking, it is almost impossible to train a gaze

estimator with infinite variations of head poses and image resolu-

tions. �erefore, image-based estimation methods require a normal-

ization technique to align training and test data and to constrain

the input image to have a fixed range of variations. For example,

image-based object recognition methods usually crop and resize

the input image to a fixed image resolution while assuming that

this operation does not affect the object label. �e difficulty of data

normalization in gaze estimation task is, however, the fact that eye

image cropping, rotation, and resizing do affect their corresponding

gaze labels. Gaze estimation is inevitably a geometric task, and it is

important to properly formulate the normalization operation.

For 3D data, such as UT Multiview [Sugano et al. 2014], EYE-

DIAP [Funes Mora et al. 2014] and UnityEye [Wood et al. 2015], it

is possible to render training and test samples so that they have
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Figure 4: Basic concept of the eye image normalization [Sug-

ano et al. 2014]. (a) Starting from an arbitrary relationship

between the head pose coordinate system centered at eye

center er (top) and the camera coordinate system (bottom);

(b) the camera coordinate system is rotated with a rotation

matrix R; (c) the world coordinate system is scaled with a

scaling matrix S ; (d) the normalized eye images should be

equivalent to the one captured with this normalized camera.

the same camera at the same distance from the eye. However, for

captured 2D images, such as MPIIGaze [Zhang et al. 2018] and

GazeCapture [Kra�a et al. 2016], it is impossible to translate the

eye. Nevertheless, we can still perform the approximation to crop

the eye image properly.

3.2 Eye Image Normalization

We first summarize the detailed eye image normalization procedure

proposed in [Sugano et al. 2014]. �e normalization scheme aims

at canceling variations in the eye image appearance as much as

possible. �e key idea is to standardize the translation and rotation

between camera and face coordinate system via camera rotation

and scaling.

Figure 4 illustrates the basic concept of the eye image normal-

ization. As shown in Figure 4a, the process starts from an arbitrary

pose of the target face. �e pose is defined as a rotation and trans-

lation of the head coordinate system with respect to the camera

coordinate system, and the right-handed head coordinate system

is defined according to the triangle connecting three midpoints of

the eyes and mouth. �e x-axis is defined as the line connecting

midpoints of the two eyes from right eye to le� eye, and the y-axis is

defined as perpendicular to the x-axis inside the triangle plane from

the eye to the mouth. �e z-axis is perpendicular to the triangle

and pointing backwards from the face.

To simplify the notation of eye image normalization, we use

the midpoint of the right eye as the origin of the head coordinate

system, and we denote the translation and rotation from the camera

coordinate system to the head coordinate system as er and Rr .

Given this initial condition, the normalization process trans-

forms the input image so that the normalized image meets three

conditions. First, the normalized camera looks at the origin of the

head coordinate system and the center of the eye is located at the

center of the normalized image. Second, the x-axes of the head and

camera coordinate systems are on the same plane, i.e., the x-axis

of the head coordinate system appears as a horizontal line in the

normalized image. �ird, the normalized camera is located at a

fixed distance dn from the eye center and the eye always has the

same size in the normalized image.

�e rotation matrix R to achieve the first and second conditions

can be obtained as follows. If we rotate the original camera to

meet the first condition, the rotated z-axis of the camera coordinate

system zc has to be er . To meet the second condition, the rotated

y-axis has to be defined asyc = zc ×xr . xr is the x-axis of the head

coordinate system, and the y-axis of the rotated camera is defined

to be perpendicular to both zc and xr . �en, the remaining x-axis of

the rotated camera is defined as xc = yc × zc . Using these vectors,

the rotation matrix can be defined as R = [
xc
‖xc ‖

;
yc
‖yc ‖

; zc
‖zc ‖

]. In

addition, the scaling matrix S to meet the third condition can be

defined as diag(1, 1, dn

‖er ‖
). �erefore, the overall transformation

matrix is defined asM = SR.

In the extreme case where the input is a 3D face mesh, the

transformation matrixM can be directly applied to the input mesh

and then it appears in the normalized space with a restricted head

pose variation. Since the transformation isM defined as rotation

and scaling, we can apply a perspective image warping with the

transformation matrixW = CnMC−1
r to achieve the same effect if

the input is a 2D face image. Cr is the original camera projection

matrix obtained from camera calibration, and Cn is the camera

projection matrix defined for the normalized camera.

Sugano et al. [Sugano et al. 2014] introduced this idea to re-

strict the head pose variation when synthesizing training data for

learning-based gaze estimation from 3D face meshes. Since we

can assume test data always meets the above three conditions a�er

normalization, it is enough to render training images by placing

virtual cameras on a viewing sphere around the eye center with

radius dn and rotating the camera to meet the first and second

conditions. �is data normalization results in only 2 degrees of

freedom, and significantly reduces the training space to be covered

via learning-by-synthesis framework.

3.3 Modified Data Normalization

As discussed earlier, it is also important to properly handle the

geometric transformation caused by the eye image normalization

and apply the same transformation to the gaze direction vector. If

the input is training data and associated with a ground-truth gaze

direction vector дr , it is necessary to compute the normalized gaze

vector дn which is consistent with the normalized eye image.

Assuming 3D data, Sugano et al. [Sugano et al. 2014] originally

proposed to apply the same transformation matrix to the gaze

vector as дn = Mдr . However, while in the 3D space the same

rotation and translation should be applied to the original gaze

vector дr , this assumption is not precise enough when dealing with

2D images. Since scaling does not affect the rotation matrix, the

head rotation matrix a�er normalization is computed only with

rotation as Rn = RRr . For 2D images, image normalization is

achieved via perspective warping asW = CnMC−1
r . �is operation

implicitly assumes the eye region is a planar object, and if the eye is

a planar object, scaling should not change the gaze direction vector.

Based on this discussion, in this work we propose a slightly

modified version of the data normalization process for 2D images.
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Figure 5: Example of our synthesized 2D images and corresponding eye images fromUTMultiview. We first randomly rotated

and translated the 3D face mesh in the camera coordinate system to render the 2D image (the top row), and performed the

normalization on the captured image to crop the eye image (the middle row), or directly crop the eye images (the bottom row)

according to the eye corner landmarks as a naive baseline.

While the formulation of the image normalization and the image

transformation matrixW stays exactly the same, different with

the original 2D data normalization method, we propose to only

rotate the original gaze vector to obtain the normalized gaze vector

дn = Rдr . �is formulation corresponds to an interpretation of the

image transformation matrixW that the scaling S is applied to the

camera projection matrixCr , instead of the 3D coordinate system.

While this results in the exactly same image warping, it does not

affect the physical space in terms of scaling and the gaze vector is

only affected with the rotation matrix R.

�e transformation is also used to project back the estimated gaze

vector to the original camera coordinate system. If the gaze vector

estimated from the normalized eye image is д̂n , the estimation

result in the original camera coordinate system д̂r is obtained by

rotating back д̂n as д̂r = R−1д̂n .

4 EXPERIMENTS

In this section, we validate the modified formulation of the data nor-

malization using both synthetic and real image datasets. In all exper-

iments that follow, we used the AlexNet architecture [Krizhevsky

et al. 2012] as a basis for our appearance-based gaze estimation

network and concatenated the normalized head angle vector and

the first fully-connected layer, as done in [Zhang et al. 2018]. �e

output of the network is a two-dimensional gaze angle vector д

as polar angles converted from дn . As loss we used the Euclidean

distance between estimated gaze angle vector д̂ and ground-truth

gaze angle vector д. During computing the final gaze estimation

error, we first converted д̂ and д to д̂n and дn , and then projected

them back to the original camera coordinate system to calculate

the differences between direction vectors in degrees. We used the

AlexNet pre-trained on the ImageNet dataset [Deng et al. 2009]

from the Caffe library [Jia et al. 2014], and fine-tuned the whole

network with gaze estimation training data depending on the par-

ticular experimental se�ing (see the respective section below for

details). We used the Adam solver [Kingma and Ba 2015] with

the two momentum values set to β1 = 0.9 and β2 = 0.95, as well

as the initial learning rate set to 0.00001. For data normalization,

we set the focal length for the normalized camera projection ma-

trix and the distance dn to be compatible with the UT Multiview

dataset [Sugano et al. 2014]. �e resolution of the normalized eye

images was 60 × 36 pixels.

In this section, we refer to the original data normalizationmethod

as Original, and the modified data normalization method as Mod-

ified. We further analyze a naive baseline without any geometric

transformation (None). For this baseline, we took the center of two

eye corners as eye center, 1.5 times of the distance between two

eye corners as eye width, and 0.6 times of eye width as eye height

to crop the eye image. Last, we resized the eye image to the same

60 × 36 pixels.

4.1 Evaluation on Synthetic Images

While the main purpose of data normalization is handling large

variations in head pose, real-world datasets inevitably have limited

head pose variations due to device constraints. To fully evaluate the

effect of data normalization on gaze estimation performance, we

first use synthetic eye images with controlled head pose variations.

We synthesized eye images using 3D face meshes of 50 participants

provided by UT Multiview [Sugano et al. 2014] to simulate 2D

images that were captured with different head poses. We placed

the 3D face mesh at random positions and rotations in the virtual

camera coordinate system, and then rendered the image with the

camera. �e range of these randomizations was [-500 mm, 500

mm] for the x- and y-axes of the 3D face mesh position, [100 mm,

1500 mm] for the z-axis (distance between eye and camera), and

[-30°, 30°] for head rotation around the roll, pitch and yaw axes,
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Figure 6: Gaze estimation error in degrees of visual angle

for data normalization methods Original and Modified, and

None baselines with the gaze estimation network fine-tuned

on UT Multiview, and tested on our synthetic samples. Bars

show the mean error across participants and error bars indi-

cate standard deviations.

respectively. Note that we constrained the random position of

the 3D face mesh so that the faces always fall inside the camera’s

field of view. �e image resolution was set to 1280 × 720 pixels.

Some examples of the rendered images are shown in the top row

of Figure 5. Note that our own synthetic images were treated as

2D images in the following experiments, without access to the

original 3D face mesh. �e above process is introduced to simulate

challenging input images with large head pose variations.

We then performed the data normalization with Original or

Modified methods on the rendered image to crop the eye images.

�e cropped eye images via 2D data normalization are shown in the

middle row of Figure 5, and we also show the cropped eye image

from the None baseline as the bo�om row of Figure 5. Note that

the cropped eye images for Original and Modified are the same as

the middle row of Figure 5, and the only difference is whether the

gaze direction is scaled or not. UT Multiview contains 160 face

meshes with different gaze directions for each 50 participant. Using

this approach, we synthesized one 2D image for each face mesh,

and flipped the cropped right eye images horizontally and trained

them together with the le� eye images. �is finally resulted in

160 × 2 = 320 eye images for each of the 50 participants. Since this

None baseline cannot take into account the eye position, we also

prepared a position-restricted synthetic dataset to train and test

a special version (None (restricted)) of the None baseline. During

synthesis, we fixed the x- and y-axes of the 3D face mesh position

and set them to zero, and the face center was always located in

the image center. �is way, only rotation and distance change in

this dataset, and the None (restricted) baseline takes into account

all information related to head pose variation.

4.1.1 Test Data Normalization. To evaluate the effectiveness of

the data normalization, we first evaluate the scenario where the

training images are synthesized from 3D data under the normal-

ized pose space, and 2D test images are cropped according to the

normalization schemes. We fine-tuned the AlexNet model on the

synthetic data provided by the original UT Multiview dataset, and
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Figure 7: Gaze estimation error for the different normaliza-

tion methods and different distances between camera and

eye. Curves plotted using least squares polynomial fitting.

tested on our own synthetic samples that were processed with the

Original, Modified or None baseline.

We converted the output gaze angle vector from the model д to a

gaze direction vector дn , and then projected it back to the original

camera coordinate system depending on the normalization method:

For Original, we computed the gaze direction vector in the original

camera space with transformation matrixM as дr = M−1дn . For

the Modified method, we computed the gaze direction vector in the

original camera space with rotation matrix R as дr = R−1дn . For

the None baseline, we directly took the output from the model as

the final gaze direction дr in the original camera space.

�e results are shown in Figure 6 with the gaze estimation per-

formances for None, Original and Modified. �e bars show the

mean gaze estimation error in degrees, and the error bars show the

standard deviation across all participants. As can be seen from the

figure, the Modified method outperforms the other two methods

significantly. Since the only difference between Original and Mod-

ified is scaling the gaze direction or not, the be�er performance

achieved by Modified over Original indicates the scaling on gaze

direction actually hurts the performance. �is is because the scal-

ing factor is not suitable to apply on gaze direction here, since the

eye region in the input image is a planar object. Such a scaling

factor even makes the performance worse than the None baseline

without any data normalization. �e Modified outperforms over

the None baseline significantly with 32.0% (from 14.7 degrees to

10.0 degrees), clearly showing the benefits of data normalization

for handling the variations caused by head poses. None (restricted)

achieved slightly be�er but insignificant performance improve-

ments (p < 0.01, paired Wilcoxon signed rank test) over the None

baseline. �is indicates that this naive baseline cannot achieve per-

formance comparable to data normalization even if face positions

in the image are restricted.

Figure 7 further shows the gaze estimation error for different

distances between camera and eye. To generate a smooth curve,

we used least squares polynomial fi�ing. As can be seen from

the figure, the gaze estimation error of the Modified method only

slightly increases with increasing distance. A similar trend can also
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be observed for the None baseline. In contrast, the Original data

normalization method encodes distance information in the gaze

direction. �is results in an increased gaze estimation error, partic-

ularly for small distances. When projecting the gaze direction back

to the original camera coordinate system, the gaze direction will be

scaled with the inverse scaling matrix S . In consequence, the gaze

direction is narrowed when the sample has bigger distance than dn ,

and the gaze direction is expanded when the sample has smaller

distance than dn . �is causes the larger gaze estimation error on

the smaller distances. Finally, given that the scaling matrix S for

Original becomes the identity matrix when the distance between

camera and eye is dn , the gaze estimation error is the same for

Original and Modified at that normalization distance.

4.1.2 Training Data Normalization. In this section, we further

evaluate the model trained and tested on the data generated from

2D images. While the model was trained on the data generated

directly with the 3D face mesh in the previous evaluation scenario

and our synthetic data was used only as test data, in this section we

split our synthetic images into training and test data. In this case,

the training and test samples were both processed via the Original,

Modified or None methods, respectively. We performed a 5-fold

cross-person evaluation on the 16,000 synthesized samples from 50

participants.

�e results of this evaluation are shown in Figure 8. �e bars

show the mean gaze estimation error in degrees, and the error bars

show the standard deviation across all participants. As can be seen

from the figure, in this se�ing, both data normalization methods

achieve be�er performances than theNone baseline, suggesting that

the data normalization benefits the model training. �e None base-

line performed the worst because the noisy training data with head

rotation makes the model training difficult. Restricting the face

position does not improve performance, as indicated by the None

(restricted) baseline. For Original, both training and test samples

were rotated and also scaled in the same way, which corresponds to

mapping the gaze direction into a scaled space. �is does not result

in large gaze estimation error when projecting the gaze direction

back to the original camera coordinate system. However, as we al-

ready saw, theModified formulation handles the normalization task

more accurately and hence overall performance was still improved.

4.2 Evaluation on Real Images

We then evaluated the impact of data normalization using real im-

ages from the MPIIGaze dataset [Zhang et al. 2018]. As discussed

earlier, real images have stronger device constraints, and in terms

of head pose, it has smaller variations than the previous case. �e

MPIIGaze dataset consists of a total of 213,659 images collected on

the laptops of 15 participants over the course of several months

using an experience sampling approach. �erefore, most of the

head poses in the MPIIGaze dataset are restricted to the natural

and typical ones in front of a laptop webcam. One important ques-

tion is whether data normalization contributes to the estimation

performance even with a restricted head pose range.

4.2.1 Test Data Normalization. We first performed the simple

cross-dataset evaluation, which we trained the model on the UT

Multiview dataset and tested on the MPIIGaze dataset. We used the
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Figure 8: Gaze estimation error in degrees of visual angle

for data normalization method Original and Modified, and

None baseline with the gaze estimation network fine-tuned

and tested on our synthetic samples. Bars show themean er-

ror across participants and error bars indicate standard de-

viations.
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Figure 9: Gaze estimation error in degrees of visual angle

for data normalization method Original and Modified, and

None baseline with the gaze estimation network fine-tuned

on UT Multiview, and tested on MPIIGaze. Bars show the

mean error across participants and error bars indicate stan-

dard deviations.

same normalized camera projection matrix, normalized distance

(dn = 600mm), and images size (60 × 36 pixels) as before.

�e results are shown in Figure 9. �e bars show the mean gaze

estimation error in degrees, and the error bars show the standard

deviation across all participants. As can be seen from the figure,

the ranking in terms of performance is the same as in Figure 6.

�at is, the Modified method achieved the best performance and

the Original method achieved the worst performance. �e None

baseline has the second-best performance. �is analysis confirms

that encoding distance information by scaling gaze direction in the

Original method is not helpful since the eye region is planar in the

input 2D image.

�e relative improvement achieved by theModified method over

the None baseline becomes smaller compared to Figure 6 (9.5%

vs 32.0%). �is is because the head rotation in MPIIGaze data as
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Figure 10: Gaze estimation error in degrees of visual angle

for data normalization methods Original and Modified, and

None baseline with the gaze estimation network fine-tuned

and tested on MPIIGaze. Bars show the mean error across

participants and error bars indicate standard deviations.

shown in [Zhang et al. 2018] is much narrower compared to our

synthesized samples from UT Multiview.

4.2.2 Training Data Normalization. Last, we repeated the train-

ing on 2D images evaluation onMPIIGaze using a leave-one-person-

out approach. �e training and test sets were both processed via the

Original, Modified or None methods, respectively. �e results are

shown in Figure 10. �e bars show the mean gaze estimation error

in degrees, and the error bars show the standard deviation across

all participants. �e figure shows that performance order for the

different methods is similar to Figure 8. Both Original and Modified

achieved be�er performances than the None baseline, while Mod-

ified again achieved the best performance. As such, this analysis

confirms that the data normalization can lead to be�er performance

for both synthetic and real data, and that the Modified data normal-

ization method can achieve be�er performance than the Original

data normalization method.

�e relative improvement achieved by theModified method over

the None baseline when evaluating on synthetic (see Figure 8) and

real (see Figure 10) data increased from 16.3% to 32.7% despite

the fact that the head rotation range is smaller for real data from

MPIIgaze. �is is most likely because for the real data, themodel has

to handle variations that never appeared in synthesized data, such

as different illumination conditions. �e variability caused by the

head rotation becomes crucial during model learning for the None

baseline since the model has to handle additional variations. �is

suggests that data normalization is particularly beneficial for the

case of training and testing on 2D images, which is the practically

most relevant case for appearance-based gaze estimation.

5 CONCLUSION

In this workwemodified the data normalizationmethod for appearance-

based gaze estimation initially proposed in [Sugano et al. 2014]. We

demonstrated the importance of eye image appearance variations

caused by different head poses, and provided detailed explanations

and discussions on how data normalization can cancel most of

these variation to make the model learning more efficient. We

showed that data normalization can result in significant perfor-

mance improvements between 9.5% and 32.7% for different evalua-

tion se�ings using both synthetic and real image data. �ese results

underline the importance of data normalization for appearance-

based methods, particularly in unconstrained real-world se�ings.

As such, we strongly recommend data normalization as the default

pre-processing step for appearance-based gaze estimation.
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