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Figure 1: We propose a novel interactive experimental design to collect 3D saliency data using an eye tracker deployed on a
screen. Red dots represent observation points restricted to a spherical surface. Using this method, we collected a 3D saliency
dataset comprising 10 participants looking at sixteen 3D objects and analysed human gaze behaviour on our dataset.

ABSTRACT
While visual saliency has recently been studied in 3D, the experi-
mental setup for collecting 3D saliency data can be expensive and
cumbersome. To address this challenge, we propose a novel experi-
mental design that utilises an eye tracker on a screen to collect 3D
saliency data, which could reduce the cost and complexity of data
collection. We first collected gaze data on a computer screen and
then mapped the 2D points to 3D saliency data through perspective
transformation. Using this method, we propose Saliency3D, a 3D
saliency dataset (49,276 fixations) comprising 10 participants look-
ing at sixteen objects. We examined the viewing preferences for
objects and our results indicate potential preferred viewing direc-
tions and a correlation between salient features and the variation
in viewing directions.
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1 INTRODUCTION
Visual saliency describes how certain features in a visual stimulus
stand out and capture human attention [Wang et al. 2016]. The
recent focus of saliency research is on 2D images [Cornia et al.
2016; Fosco et al. 2020; Liu and Han 2018]. In recent years, there
has been an increasing interest in studying saliency in 3D environ-
ments, such as how people explore VR [Hu 2020; Sitzmann et al.
2018], and stereoscopic scenes [Fang et al. 2014; Wang et al. 2013].
Ramenahalli and Niebur [2013] explored the method of comput-
ing 3D saliency from 2D images. Additionally, depth information
played an important role in the identification of visually salient
regions in images [Desingh et al. 2013]. Wang et al. [2018] designed
an experiment to observe 3D printed stimuli from multiple views.
However, they limited the view within 90◦ due to their experiment
setting – printed 3D objects are cumbersome and inflexible.

To overcome these limitations, we present a novel interactive
design to collect 3D saliency data using an eye tracker deployed on
a standard 2D computer screen. To simulate the manipulation of
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a real, 3D object, participants could freely switch views by press-
ing keys on a keyboard, while gaze data were collected using a
screen-based eye tracker and then mapped to 3D saliency. We val-
idated our data by studying two hypotheses informed by prior
research: 1) humans show clear preference towards certain per-
spectives [Blanz et al. 1999] and 2) the existence of a bias towards
facial features [Bindemann et al. 2005]. Our results confirmed that
participants did have a consistent preferred viewing perspective
and a strong face bias when viewing 3D objects.

The contributions of this paper are twofold: (1) We propose
a novel experimental design to collect 3D saliency data with a
screen-based eye tracker. (2) We collect Saliency3D, a 3D saliency
dataset comprising 10 participants looking at sixteen 3D objects.
Our dataset and code are publicly available at https://doi.org/10.
18419/darus-4101.

2 RELATEDWORK
The concept of visual saliency has been studied extensively over
the past few decades. Numerous experiments have been conducted
to investigate the various salient features.

Human viewing behaviour. The oculomotor system defines hu-
man viewing behavior with three major systems: the fixation-
saccade system, the vestibule ocular system (VOR), and the smooth
pursuit system [Wang et al. 2018]. In the fixation-saccade system,
the eyes can maintain stability while humans fixate gaze [Martinez-
Conde et al. 2004]. Moreover, the human eyes exhibit eye move-
ments called saccades, which make quick and ballistic movements
between two fixations in a very short time [Majaranta and Bulling
2014].

Salient feature. Previous studies have demonstrated that saliency
strongly correlates with low-level and high-level features, influ-
encing human visual attention [Cong et al. 2018; Kummerer et al.
2017; Xu et al. 2014; Zhang et al. 2008]. Reinagel and Zador [1999]
showed that image regions with higher spatial contrast often attract
more attention from humans. Furthermore, Baddeley and Tatler
demonstrated that high-frequency edges dominate predicting fix-
ation positions [Baddeley and Tatler 2006]. Studies conducted by
Engmann et al. [2009]; Itti et al. [1998]; Jost et al. [2005] revealed
that color is a significant factor that influences human visual at-
tention. In addition, high-level salient features, such as semantic
information, abstract concepts, and task requirements, also play an
important role in capturing human attention. For example, faces
strongly attract human attention [Strohm et al. 2023], even if the
faces are unrelated to the goal of the experimental task [Bindemann
et al. 2005; Langton et al. 2008].

3D saliency. Compared to 2D saliency, 3D saliency brings more
factors that affect human viewing behaviour [Lavoué et al. 2018;
Wang et al. 2013]. Three-dimensional shapes and lighting signifi-
cantly influence attention [Lavoué et al. 2018], while human visual
attention is influenced by depth information [Desingh et al. 2013;
Lang et al. 2012]. Recently, Bruckert et al. [2023] used the Bubble-
View [Kim et al. 2017] metaphor to crowdsource visual attention
data on 3D graphical content. Hu et al. [2021, 2020, 2019] analyzed
and predicted fixations in virtual reality environments. While 3D

Figure 2: Sixteen selected stimuli [CzernO 2021; Turk et al.
2003; Wang et al. 2018]

saliency has been studied extensively, there is currently no easy-to-
use method to collect 3D saliency data using commonly available
hardware. We propose an experimental design that requires a 2D
computer monitor and a remote eye tracker.

3 SALIENCY3D DATASET
3.1 Data collection

Stimuli. The selected stimuli should be rich in both high-level
and low-level features [Henderson and Hollingworth 1999; Itti
et al. 1998]. Sixteen 3D objects are selected as stimuli (see Fig-
ure 2). Eleven objects (Dragon, Hand, Planck, Sofa, Space_shuttle,
Spanner, Vase, Watchtower, Casting, Game_controller, Rockarm) are
from Wang et al. [2018], and four objects (Bunny, Happy_buddha,
Armadillo, Lucy are from The Stanford Models [Turk et al. 2003].
One of the stimuli 𝑓 𝑎𝑐𝑒 was selected from website [CzernO 2021].

Participants. We recruited 10 participants (6 male, 4 female) from
the local university1. All participants reported normal or corrected-
to-normal vision. Participants were asked to use a mounted chin
rest to minimise the influence of head movements on gaze data qual-
ity. They were compensated for their participation and could stop
anytime without adverse consequences. All personal information
was fully pseudonymised.

Apparatus. We used a desktop computer and a 24.5-inch monitor
with a 1920× 1080 pixel resolution to display the stimuli. Partici-
pants’ gaze data was collected using the Eyelink-1000 Plus Desktop
1The university ethics committee approved our study prior to data collection.

https://doi.org/10.18419/darus-4101
https://doi.org/10.18419/darus-4101


Saliency3D: A 3D Saliency Dataset Collected on Screen ETRA ’24, June 4–7, 2024, Glasgow, United Kingdom

Figure 3: Top: Experiment setup. Numbers represent 1○ a
monitor, 2○ eye tracker, 3○ chin rest, and 4○ host computer.
Bottom: Interactive experiment design. The red dots repre-
sent some observation perspectives. The observation per-
spectives are restricted to a spherical surface with a radius
of 300 mm.

Mount Eye Tracker running at 2,000Hz and providing an accuracy
of 0.5◦ after proper calibration. The distance from the display to the
eye is set to 85 cm. Figure 3 depicts the display setup, eye tracker,
chin rest, and host computer. We developed a web-based interac-
tive experimental platform to observe the multi-view stimuli. Each
participant observed twelve 3D objects, each for two minutes. The
order of presentation for the objects was randomised. We ran a web
browser in full-screen mode with Three.js2 to render the objects,
which was embedded in the WebLink recording software provided
by the manufacturer3.

Procedure. The participants used the keyboard to change the
viewing direction to observe the 3D object from different directions.
To maintain the depth information of the stimuli surface and the
saliency distribution, the relative distance between the camera
and the stimuli must remain fixed, regardless of the observation
point’s changes [Lang et al. 2012]. Additionally, the angle intervals
2https://threejs.org/
3https://www.sr-research.com/weblink/

of the observation points distributed around the Z-axis should be
consistent [Wang et al. 2018]. To achieve this, we distribute the
viewpoints on the surface of a sphere, with the centre of the sphere
being the centre of the 3D object and the radius being 300mm. As
shown in Figure 3 (right), the sphere is divided into 11 slices along
the X-axis, and the angle between every two slices is 18◦ along
the Z-axis (∠\1 and ∠\2). Furthermore, each slice has 25 evenly
distributed observation points, with a difference of 14.4◦ between
every two adjacent points (∠𝜑1 and ∠𝜑2). The spherical coordinate
system (𝑟, \, 𝜑) is used to switch the camera’s viewing direction,
where 𝜑 refers to the angle change along the X-axis, and \ denotes
the angle change along the Z-axis. The coordinate position of the
camera can be expressed as:

(𝑥,𝑦, 𝑧) = 300𝑚𝑚 · (cos𝜑 sin\, sin𝜑 sin\, cos\ ) (1)

The four keys ‘W’, ‘S’, ‘A’, and ‘D’were used to switch the viewing
direction, where ‘W’ was used to decrease \ , ‘S’ to increase \ , ‘A’
to decrease 𝜑 , and ‘D’ to increase 𝜑 . To avoid the possible bias
caused by participants being inclined to look at the centre of the
screen, the initial viewing direction was randomly set for each
round. Each 3D object was observed for 2 minutes. The participants
were asked to use the keyboard to switch the viewing direction to
observe the region of interest in the 3D stimulus. After observation,
participants were asked to choose five preferred viewing directions
and prioritise them using the numeric keys ‘NUM1’ – ‘NUM5’ on
the keypad. Participants can rest and move freely after observing
each stimulus for up to 1 minute. Prior to presenting each new
object to the participant, the eye tracker was properly calibrated.

3.2 Data Processing
Mapping Gaze from 2D to 3D. The raw gaze data contains coor-

dinates, start and end timestamps, and duration. Records of key
presses are loaded to align the view directions and gaze data. After
each key press, the viewing direction remains the same until the
next key press. With the initial position known, each key press cor-
responds to a unique viewing direction, i.e., each ‘A’ or ‘D’ key press
corresponds to ±14.4◦∠𝜑 , and each ‘W’ or ‘S’ key press corresponds
to ±18◦∠\ .

The viewing duration is calculated as the interval between suc-
cessive key presses. We employ the ray-casting method to deter-
mine the 3D gaze mapped on the model’s surface [Roth 1982].
The intersection point of the ray with the 3D object in the spa-
tial coordinate system represents the actual three-dimensional po-
sition observed by the observer. Then, we compute the inverse
model-view-projection operation based on the spatial location of
the viewpoint to map the gaze points from the screen to the spatial
coordinate system:

𝑣𝑚𝑜𝑑𝑒𝑙 = (𝑃 ·𝑉 ·𝑀)−1 · 𝑣𝑐𝑙𝑖𝑝 , (2)

where 𝑀 , 𝑉 , and 𝑃 represent the object, view, and projection
matrices, 𝑣𝑐𝑙𝑖𝑝 represents the gaze points in the screen coordinate
system, and 𝑣𝑚𝑜𝑑𝑒𝑙 represents the gaze points in the spatial coordi-
nate system. See the Appendix for a detailed deduction of screen-
spatial coordinate system transformation. Due to the lack of depth
information, the transformed result is a ray originating from the
current viewpoint. Therefore, we calculate the coordinates of the
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Figure 4: Number of fixations (top) and fixation duration
(middle) in different viewing perspectives for Bunny, and the
object under the most viewed perspective (bottom). Red dots
depict the initial perspective of each participant.

intersection of this ray and the model surface, representing the
3D gaze data corresponding to the 2D gaze data under the given
viewing perspective.

4 RESULTS AND DISCUSSION
4.1 Hypothesis

H1: It was previously observed that different viewing directions
are not equally effective at revealing shapes, and a clear preference
for certain views is expressed [Blanz et al. 1999]. To examine the
consistency of human viewing behavior on the same stimulus, we
formulated two hypotheses:

• H1.1: Most people preferred a viewing perspective when
observing a 3D stimulus.

• H1.2: The initial viewing perspective does not affect the most
preferred viewing pespective.

H2: Humans are more interested in facial features when viewing
images [Bindemann et al. 2005]. We assume the existence of a face
bias on 3D objects.

4.2 Findings
Viewing Preference. Figure 4 depicts the gaze distribution of

Bunny from the aspect of number of fixations (top) and fixation du-
ration (middle). The x-axis ranges between [0, 25], representing ∠𝜑
in [0, 360], and the y-axis ranges between [0, 10], representing ∠\
in [0, 180]. Many fixations are distributed at [0, 5] and other view-
ing directions near this position. While the observer may switch to
one viewing direction several times, the fixation duration in this

Figure 5: Five stimuli with facial features. Participants have
a strong face bias on 3D objects.

direction is stable. Thus, the number of fixations cannot be regarded
as the sole criterion to indicate the preferred viewing perspective.
Moreover, the fixation duration is concentrated under the viewing
perspective [0, 5]. It strongly indicates the existence of the most
preferred viewing perspective of the Bunny (see Figure 4), which ap-
pears in other 3D objects as well (see Appendix). We hereby confirm
that the preferred viewing perspective of 3D objects among people
exists (H1.1). Meanwhile, the experimental result shows that this
observational preference did not change with the first impression.
In the experiment, the initial viewing directions of the 10 observers
were randomly generated. As shown in figure 4, all initial positions
are marked by red dots. This means that preference is not affected
by the first impression but rather a general observational behavior
(H1.2). Thus, the preferred viewing direction is not influenced by
the initial perception of the object but rather by a fundamental
observational behavior.

Face Bias. We use fixation density [Wang et al. 2023] to study the
face bias on 3D objects. The fixation density (FD) is calculated as
the accumulated number of gaze fixations divided by the covering
area of fixation targets. Five objects with facial features are selected
(Bunny, Happy_buddha, Lucy, Armadillo, Dragon). As shown in table
1, 𝑟𝑔𝑎𝑧𝑒 denotes the ratio of the number of gazes in the face region to
the number of all gazes. 𝑟𝑎𝑟𝑒𝑎 denotes the ratio of the face region’s
surface area to the object’s total surface area. The fixation density
on the face region can be represented by:

(𝐺𝑎𝑧𝑒𝑡𝑜𝑡𝑎𝑙 × 𝑟𝑔𝑎𝑧𝑒 )/(𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 × 𝑟𝑎𝑟𝑒𝑎), (3)

where𝐺𝑎𝑧𝑒𝑡𝑜𝑡𝑎𝑙/𝐴𝑟𝑒𝑎𝑡𝑜𝑡𝑎𝑙 represents the average density of fix-
ations on the object. 𝐹𝐷 = 𝑟𝑔𝑎𝑧𝑒/𝑟𝑎𝑟𝑒𝑎 quantifies the fixation den-
sity on the face region for thewhole object. Lucy andHappy_buddha
have the highest 𝐹𝐷 , 7.05 and 5.33 respectively, while the dragon
has the lowest fixation density of 1.63. A 𝐹𝐷 larger than 1 suggests
the existence of face bias, while a higher 𝐹𝐷 indicates a stronger
face bias. The 𝐹𝐷 of human faces (Lucy and Happy_buddha) is
higher than any other objects, which confirms the hypothesis H2.
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Table 1: Lucy and Happy_buddha have the highest mean fixation density, indicating a strong face bias during observation. The
object with the highest fixation density of each participant is shown in bold. FD: Fixation Density.

name Armadillo Happy_buddha Lucy Bunny Dragon
𝑟𝑎𝑟𝑒𝑎 9.48% 4.26% 3.07% 24.5% 31.4%

𝑟𝑔𝑎𝑧𝑒 FD 𝑟𝑔𝑎𝑧𝑒 FD 𝑟𝑔𝑎𝑧𝑒 FD 𝑟𝑔𝑎𝑧𝑒 FD 𝑟𝑔𝑎𝑧𝑒 FD
P1 38.4% 4.05 41.3% 9.70 42.6% 13.88 50.6% 2.07 79.7% 2.54
P2 44.1% 4.65 27.2% 6.38 15.6% 5.07 45.2% 1.85 57.0% 1.82
P3 22.4% 2.36 19.8% 4.65 6.7% 2.18 31.5% 1.28 40.8% 1.30
P4 28.1% 2.97 9.6% 2.26 11.6% 3.77 50.2% 2.05 46.7% 1.49
P5 41.8% 4.41 28.4% 6.66 43.0% 14.00 50.0% 2.04 52.0% 1.65
P6 44.1% 4.65 17.0% 4.00 14.1% 4.60 39.0% 1.59 50.0% 1.59
P7 28.3% 2.98 20.7% 4.87 24.4% 7.93 33.7% 1.38 42.5% 1.35
P8 41.9% 4.42 24.8% 5.82 6.0% 1.94 36.9% 1.51 43.8% 1.40
P9 29.2% 3.08 14.2% 3.33 16.6% 5.41 42.1% 1.72 50.4% 1.60
P10 39.4% 4.15 23.9% 5.62 35.9% 11.68 46.4% 1.90 48.1% 1.53

mean FD 3.77 (0.7) 5.33 (4.25) 7.05 (21.16) 1.74 (0.08) 1.63 (0.13)
mean Ranking 2.5 (0.5) 1.9 (0.54) 1.6 (0.71) 4.2 (0.18) 4.7 (0.23)

4.3 Limitation
In the study of Wang et al. [2018], the models observed by the
participants were 3D-printed models. Conversely, the study in our
work utilizes computer-generated 3D models for participant obser-
vation. Further research is required to prove whether the rendered
3D objects on the screen can fully substitute 3D-printed objects for
3D saliency studies.

5 CONCLUSION
This paper proposes a novel design for collecting gaze data for
viewing 3D objects from screens. Using this method, we collected
Saliency3D, a 3D saliency dataset comprising 10 participants look-
ing at 16 3D objects. Furthermore, we investigated the viewing
preferences for 3D objects. For most models, the differences in the
significant characteristics under different observation angles have
a strong linear correlation with the observation angle difference.
Moreover, we found that participants have a strong face bias on
3D objects. Our work shows the potential to collect 3D saliency
datasets more cheaply and efficiently.
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A APPENDIX
A.1 Screen-Spatial Coordinate Transformation
The Model-View-Projection (MVP) Matrix transforms 3D coordi-
nates into 2D coordinates on the screen. The Model matrix trans-
forms the 3D coordinate point from the local coordinate system to
the world coordinate system:

𝑀 = 𝑇 · 𝑅 · 𝑆 (4)
𝑣world = 𝑀 · 𝑣model (5)

Figure 6: Ray casting. Starting from the camera as the origin
point, a ray passes through a 2D coordinate on the screen.
The location at which this ray intersects the 3D stimulus
determines the spatial coordinate.

where 𝑇 ,𝑅, and 𝑆 represent the translation, rotation, and scaling
matrices. Due to the use of perspective projection instead of or-
thogonal projection, the spatial coordinates projected on the screen
need projection transformation. Figure 6 depicts the visible range
of the camera as the frustum, and its volume can be determined by
the field of view, the near plane, and the far plane. The projection
matrix realises the transformation between 3D coordinates and 2D
coordinates under the corresponding viewing direction:

𝑃 =


2𝑛
𝑟−𝑙 0 𝑟+𝑙

𝑟−𝑙 0
0 2𝑛

𝑡−𝑏
𝑡+𝑏
𝑡−𝑏 0

0 0 − 𝑓 +𝑛
𝑓 −𝑛 − 2𝑓 𝑛

𝑓 −𝑛
0 0 −1 0


. (6)

𝑣𝑐𝑙𝑖𝑝 represents the 2D gaze coordinates corresponding to the
screen resolution:

𝑣𝑐𝑙𝑖𝑝 = 𝑃 ·𝑉 ·𝑀 · 𝑣model . (7)

where𝑀 , 𝑉 , and 𝑃 represent the object, view, and projection ma-
trices, and 𝑣𝑚𝑜𝑑𝑒𝑙 represents the 3D coordinates in the space co-
ordinate system. Moreover, 𝑥 ,𝑦 in 𝑣𝑐𝑙𝑖𝑝 are corresponded to the
resolution of the screen, and 𝑧 is normalised as 1.

We use the inverse transformation of perspective projection to
transform 2D gaze into 3D gaze coordinates:

𝑣𝑚𝑜𝑑𝑒𝑙 = (𝑃 ·𝑉 ·𝑀)−1 · 𝑣𝑐𝑙𝑖𝑝 . (8)

A.2 Figures
This appendix contains the number of fixations and fixation dura-
tion in different viewing directions for the object Armadillo (Fig-
ure 7), Casting (Figure 8), Dragon (Figure 9), Face (Figure 10), Game_
controller (Figure 11), Hand (Figure 12), Happy_budda (Figure 13),
Lucy (Figure 14), Planck (Figure 15), Rockarm (Figure 16), Sofa (Fig-
ure 17), Space_shuttle (Figure 18), Spanner (Figure 19), Vase (Fig-
ure 20), andWatchtower (Figure 21).

http://graphics.stanford.edu/data/3Dscanrep/
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Figure 7: [Armadillo] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing perspective of each participant.

Figure 8: [casting] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.

Figure 9: [dragon] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction for each participant.

Figure 10: [Face] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.

Figure 11: [Game_controller] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing
perspectives. The red points depict the initial viewing direction of each participant.

Figure 12: [Hand] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.
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Figure 13: [Happy_budda] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing
perspectives. The red points depict the initial viewing direction of each participant.

Figure 14: [Lucy] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.

Figure 15: [Planck] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.

Figure 16: [Rockarm] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.

Figure 17: [Sofa] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing direction of each participant.
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Figure 18: [Space_shuttle] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing
perspectives. The red points depict the initial viewing perspective of each participant.

Figure 19: [Spanner] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing perspective of each participant.

Figure 20: [Vase] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspectives.
The red points depict the initial viewing perspective of each participant.

Figure 21: [Watchtower] Left: number of fixations across viewing perspectives, Right: fixation duration across viewing perspec-
tives. The red points depict the initial viewing perspective of each participant.
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