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Human gaze has a long history as a means 
for fast, accurate, and natural interaction 
with both ambient [15] and body-worn 
displays, including smartwatches [3] and 
has, more recently, also been shown to be 
a rich source of information about the user 
[6]. Eye movements are closely linked to 
everyday human behavior and cognition and 
can therefore be used for computational user 
modeling, such as for eye-based recognition 
of daily activities [2], visual search targets 
[8], or personality traits [4] – including 
analyses over long periods of time for life-

logging applications [9]. Interest in gaze  
has been fuelled by recent technical 
advances and significant cost reductions 
of mobile eye trackers that can be worn in 
daily life and provide insights into users’ 
everyday gaze behavior [1].

Despite its appeal, mobile eye tracking 
suffers from several fundamental usability 
problems. First, current mobile eye trackers 
are still uncomfortable to wear, especially 
over long time periods: The required high-
quality imaging sensors are large and thus 
often occlude the user’s field of view, are 

heavy and cause discomfort or even pain. 
Second, current eye trackers limit users’ 
mobility given that they require a wired 
connection to a recording computer.  
Finally, their obtrusive design leads to low 
social acceptance and unnatural behavior 
of both the wearer and people they interact 
with [7], thus fundamentally limiting the 
practical usefulness of mobile eye tracking as 
a tool in the social and behavioral sciences.

We argue that it is ultimately necessary 
to fully integrate eye tracking into regular 
glasses, i.e., to effectively make eye tracking 
visually and physically unnoticeable to both  
the wearer and bystanders. A key require- 
ment for such unnoticeable (invisible) 
integration is to reduce the size of an eye 
tracker’s core component: the imaging 
sensors. Smaller sensors not only signifi- 
cantly reduce the device’s weight, but can  
also be positioned in the visual periphery 
to avoid occlusions within the users’ field 
of view. In addition, the low resolution 
common to these sensors generates 
significantly less data that could be 
processed on the device itself, stored,  

or transmitted wirelessly, thus removing 
the need for a separate recording device. 
Finally, the reduced computation required 
to process low-resolution images decreases 
the load on the processor and, as such, helps 
to extend the recording time beyond the 
current limit of only a few hours.

The eye tracker we developed, InvisibleEye, 
can be fully embedded into a normal glasses 
frame (see Figure 1, bottom left). To achieve 
this, we took a radically different approach 
to mobile eye tracking. Instead of a single 
camera and model-based gaze estimation, 
InvisibleEye uses multiple, millimeter-size 

imaging sensors positioned around the 
eye as well as a computational method 
based on an artificial neural network for 
so-called appearance-based gaze estimation 
– estimating gaze of a specific user by 
automatically analyzing the eye images 
obtained from the cameras. Here we briefly 
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FIGURE 1. (Top) Classic approaches require  
high-resolution imaging sensors, resulting in 
rather bulky and obtrusive headsets, as well as 
hand-optimized algorithms for eye landmark 

detection and geometric gaze mapping. 
(Bottom) InvisibleEye is an innovative approach 
for mobile eye tracking that uses millimeter-size 
RGB cameras, which can be fully embedded 

into normal glasses frames. Our approach uses 
multiple cameras in parallel and appearance-
based gaze estimation (red cross).
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Another important parameter is the 
positioning of the cameras. Figure 2 (right) 
shows the error when using every available 
camera individually. As expected, frontal 
views of the eye yield the best results but 
are not viable in practice due to occlusion 
within the user’s visual field of view. Since 
bottom-up views and pure side views were 
the next best options, we opted to position 
the cameras there in our prototype, which 
represents one of the key attributes and 
advantages of InvisibleEye.

EXPERIMENT 2: Evaluation in a 
Controlled Laboratory Setting
The goal of the second experiment was 
to evaluate a first hardware prototype 
of InvisibleEye on real images, but in a 
controlled laboratory environment. We opted 
for Awaiba NanEye cameras with a footprint 
of only 1x1 mm, an image resolution of 
250x250 pixels, and 44 frames per second. 
The number of cameras and their positioning 
was informed by the first experiment. 

Although the form factor of this medium-
resolution camera is already sufficient to 
realize fully invisible mobile eye tracking 
(see Figure 1, bottom left), we also explored 
even lower image resolutions, i.e., below 
20x20 pixels that promise further decreased 
bandwidth and computational requirements. 
We simulated this by reducing the image 
resolution manually.

The prototype was built by attaching  
four cameras to a pair of safety glasses  
(see Figure 3, left). 

Data Collection: We used the prototype 
to record a second dataset of more than 
280,000 close-up eye images with ground 
truth annotation of the gaze location of 17 
participants (12 male, 5 female). For each 
participant, two sets of data were recorded: 
one set of training data and a separate set of 
test data. For each set, a series of gaze targets 
was shown on a display that participants 
were instructed to look at. A detailed 
description of the recording procedure  
can be found in [14] and the dataset at:  
http://www.mpi-inf.mpg.de/invisibleeye

Results: We computed the gaze estimation 
error of InvisibleEye for a resolution of  
3x3 pixels varying camera combinations 
(see Figure 3, right). InvisibleEye is capable 
of estimating gaze with an error of 3.86° 

with a single camera. It achieves the lowest 
error of 3.51° with a combination of three 
cameras. This shows that gaze estimation 
at this low resolution is possible also with 
real-world data, which is sufficient for 
many practical applications like activity 
recognition [2] or attention analysis [11]. 
We also see that additional cameras do not 
help for every combination of cameras. 

EXPERIMENT 3: Evaluation in an  
Unconstrained Setting
In the controlled setting, we assumed a 
display at a fixed distance in front of the user 
and predicted gaze in the screen coordinate 
system. For the final experiment, we built 
a second hardware prototype featuring a 
scene camera that records the user’s field 
of view and allows us to test InvisibleEye in 
an unconstrained setting. We also explicitly 

allowed gaze targets at arbitrary depths.  
The depth at which a gaze target lies directly 
correlates with the location of the target 
projected into the camera image. From only 
the view of one eye, this location in the 
image is, however, in general not inferable. 
It is therefore necessary to use views from 
both eyes to resolve this ambiguity, which 
we do by using symmetric pairs of cameras 
recording both eyes. Further, we explicitly 
allow slippage of the headset, which is a 
problem frequently occurring in practice 
[10]. For this second prototype, we decided 
against using NanEye cameras to facilitate 
comparison with state-of-the-art mobile 
gaze estimation methods that require 
higher resolution images. We instead used 
Pupil Labs cameras [5] to record the eyes 
and the scene using a custom-built, 3D 
printed frame (see Figure 4, above).

present three key experiments that we 
performed on different datasets and that 
show that our approach is competitive 
to state-of-the-art mobile eye trackers in 
terms of gaze estimation performance: 
The first dataset consists of 200,000 eye 
images synthesized using a recent computer 
graphics method [13] and allows us to 
explore the influence of the number of 
cameras, camera positioning, and image 
resolution on gaze estimation performance 
in a principled way. The second dataset 
contains 280,000 real eye images recorded 
with a first prototype implementation in a 
laboratory setting with controlled lighting. 
Finally, the third dataset has 240,000 
real eye images recorded using a second 
prototype in a challenging unconstrained 
setting in which participants gazed at 
physical targets from various angles.

EXPERIMENT 1: Evaluation on 
Synthetic Images
The goal of the first experiment was to 
investigate the design space of fully embed-
ded mobile eye tracking using synthetic 
eye image data, in particular, the minimum 
required number and positions of cameras.

Data Synthesis: The dataset for Experiment 1  
was generated using UnityEyes, a computer 
graphics eye region model to synthesize 
highly realistic and perfectly annotated eye 
region images [12]. We synthesized images 
for five different eye regions as illustrated in 
Figure 2 (left). For each combination of eye 
region, camera angle, and lighting condition, 
we recorded a set of 1,600 different eyeball 
poses. Each set was randomly split into a set 
of 1,280 training images and 320 test images. 
To simulate the images that a low-quality 

sensor would yield, we down-sampled the 
images generated by UnityEyes to resolutions 
below 20x20 pixels. We converted them to 
grayscale to further lower their dimensionality. 

Results: We trained different neural 
networks for different numbers of cameras. 
The results of this series of experiments are 
summarized in Figure 2 (middle). As can 
be seen from the figure, at a resolution of 
5x5 pixels, our approach achieves a gaze 
estimation error of  0.084° using three and 
0.073° using five cameras. Although the 
results achieved on synthetic data do not 
directly translate to the real world, given 
that the gaze estimation task is a lot easier 
without real-world noise, this first set of 
experiments clearly demonstrates that 
mobile gaze estimation does not necessarily 
require high-resolution images. 
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FIGURE 2.  The use of synthetic images (left) allows us to evaluate the performance for a varying number of cameras at 5x5-pixel 
resolution (middle) as well as a wide range of camera angles (right) measuring the average gaze estimation in degrees.

INVISIBLEEYE IS AN INNOVATIVE APPROACH 
FOR MOBILE EYE TRACKING…ITS KEY 
FEATURE IS THE COMBINATION OF CAMERAS 
WITH A METHOD FOR APPEARANCE-BASED 
GAZE ESTIMATION

FIGURE 3. First prototype equipped with four NanEye cameras (left) 
to evaluate the average gaze estimation error for different camera 
combinations at 3x3-pixel resolution (right).

FIGURE 4. (Top) Second 
prototype consisting of 
custom 3D-printed glasses 
frame equipped with three 
camera pairs. (Bottom) 
Average gaze estimation 
error for different camera 
pair combinations at  
3x3-pixel resolution.
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Data Collection: Using this prototype, 
we recorded a third dataset of 240,000 eye 
images with four participants (four male, 
aged between 24 and 38 years). To record 
gaze data at varying distances, a calibration 
marker was attached to a wall in front of  
the participants. Participants were asked  
to position themselves at an arbitrary 
distance of up to 3 meters in front of the 
marker and to perform a series of head 
movements while gazing at the marker.  
The images recorded from each camera pair, 
i.e., one camera from the left side and its 
symmetrical counterpart from the right side, 
were concatenated.

Results: We first computed a baseline 
performance using a state-of-the-art gaze 
estimation approach based on pupil detection 
[5] on the original high-resolution images. 
This baseline method achieved an error of 
10.96°. This high error is due to the strong 
slippage of the headset that is present in the 
data but not being compensated for. Similarly, 
as before, we evaluated the average gaze 
estimation performance of InvisibleEye for 
different camera pair combinations. In Fig-
ure 4 (previous page) we can see that, in all 
cases, the addition of a second camera pair 
improved the results on average for 3x3-pixel 
resolution. InvisibleEye achieves the best per-
formance with an error of only 2.04° using 
all three camera pairs. These results demon-
strate that InvisibleEye is a viable option even 
in the most challenging mobile settings.

CONCLUSION 
InvisibleEye is an innovative approach that, 
in contrast to a long line of work on mobile 
eye tracking, relies on tiny cameras that can 
be nearly invisibly integrated into a normal 
glasses frame and, as such, addresses several 
key challenges of current systems. Its key 
feature is the combination of these cameras 
with a method for appearance-based gaze 
estimation. Results from our experiments 
not only underline the potential of this 
new approach but also mark an important 
step toward finally realizing the vision of 
fully unobtrusive, comfortable, and socially 
acceptable mobile eye tracking. n
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