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Abstract

Human-like attention as a supervisory signal to guide
neural attention has shown significant promise but is cur-
rently limited to unimodal integration – even for inherently
multimodal tasks such as visual question answering (VQA).
We present the Multimodal Human-like Attention Network
(MULAN) – the first method for multimodal integration of
human-like attention on image and text during training of
VQA models. MULAN integrates attention predictions from
two state-of-the-art text and image saliency models into
neural self-attention layers of a recent transformer-based
VQA model. Through evaluations on the challenging VQAv2
dataset, we show that MULAN is competitive to state of the
art in its model class – achieving 73.98% accuracy on test-
std and 73.72% on test-dev with approximately 80% fewer
trainable parameters than prior work. Overall, our work un-
derlines the potential of integrating multimodal human-like
attention into neural attention mechanisms for VQA.

1. Introduction

Visual question answering (VQA) is an important task at
the intersection of natural language processing (NLP) and
computer vision (CV) that has attracted significant research
interest in recent years [6, 27, 28, 29, 49]. One of its key
challenges is, by its very nature, to jointly analyze and under-
stand the language and visual input. State-of-the-art methods
for VQA rely on neural attention mechanisms to encode rela-
tions between questions and images and, for example, focus
processing on parts of the image that are particularly relevant
for a given question [4, 18, 47, 49]. An increasing number
of methods make use of multiple Transformer-based atten-
tion modules [45]: they enable attention-based text features
to exert complex patterns of influence on the allocation of
attention on images [18, 49].

Simultaneously, an increasing number of works have

demonstrated the effectiveness of integrating human-like
attention into neural attention mechanisms across a wide
range of tasks, including image captioning [43], text compre-
hension [41], or sentiment analysis and grammatical error
detection [7]. Integration into VQA, however, has focused
only on images [10, 32, 34, 39, 46], despite the inherent mul-
timodality of the VQA task. A method for predicting and
integrating human-like attention on text, which has obtained
state-of-the-art performance in downstream NLP tasks, has
only recently been proposed [41] and multimodal integration
remains unexplored.

We fill this gap by proposing the Multimodal Human-
like Attention Network (MULAN) – the first method for
multimodal integration of human-like attention into VQA. In
contrast to previous unimodal integration methods on images
alone, our method allows human attention information to act
as a link between text and image input. We base MULAN
on the MCAN VQA architecture [49] and integrate state-of-
the-art human saliency models for text and images into the
attention scoring functions of the self-attention layers. This
way, human-like attention acts as an inductive bias directly
modifying neural attention processes. To model human-like
attention on text we make use of the recently proposed Text
Saliency Model (TSM) [41] that we adapt to the VQA task
while training the MCAN framework. On images we use
the recent Multi-Duration Saliency (MDS) model [14] that
also models the temporal dynamics of attention. We train
MULAN on the VQAv2 dataset [16] and achieve results that
are competitive to the state of the art in MCAN’s model
class with 73.98% accuracy on test-std and 73.72% on test-
dev. Higher accuracy is commonly achieved by increased
parameter count, large-scale pre-training and ensembling
or more recently, generative models, which are beyond the
scope of this work. Notably, given that our model is based
on the MCAN small variant, we require significantly fewer
trainable parameters than prior work.

Our contributions are three-fold: First, we propose a
novel method to jointly integrate human-like attention on
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text and image into the MCAN VQA framework [49]. Sec-
ond, we evaluate our method on the challenging VQAv2
benchmark [16] and show that it obtains performance com-
petitive with the state of the art on both test-std and test-dev
while requiring about 80% fewer trainable parameters. Fi-
nally, through detailed analysis of success and failure cases
we provide insights into how MULAN makes use of human
attention information to correctly answer questions that are
notoriously difficult, e.g. longer questions.

2. Related Work
Our work is related to previous works on 1) visual ques-

tion answering, 2) using neural attention mechanisms, and
3) using human-like attention as a supervisory signal.

Visual Question Answering. Using natural language to
answer a question based on a single image [6] has been a
topic of increasing interest in recent years [27, 28]. Antol
et al. [6] built the first, large-scale VQA dataset that provided
open-ended, free-form questions created by humans. Given
that models have been shown to exploit bias in datasets [1],
Goyal et al. [16] expanded the VQA dataset by balancing
it so that each question had two images, with two different
answers to the same question. Tests on this new dataset
(VQAv2) obtained significantly reduced performance for
current models, showing high prevalence of answer bias.
Another challenge in VQA remains the lack of inconsistency
in answer predictions [35, 38, 50] and reduced performance
for compositional questions [2, 5, 38] or linguistic varia-
tion [3, 36].

Neural Attention Mechanisms. To imbue models with
more reasoning capabilities, researchers started experiment-
ing with human-inspired neural attention and showed that
adding neural attention mechanisms improved performance
for VQA. Shih et al. [37] added a region selection layer to
pinpoint relevant areas of an image and improved over Antol
et al. [6] by 5%. Similarly, Anderson et al. [4] demonstrated
that using bottom-up attention was preferable to top-down
attention, winning the first place in the 2017 VQA Chal-
lenge. Jiang et al. [19] further expanded on this work by
optimizing the model architecture and won the 2018 VQA
challenge. Follow-up works combined learned visual and
language attention in order to narrow down which part of
the image and question are relevant, first with alternating
attention [25], dual attention [30], and finally multi-level
attention [47]. The success of Transformers [45] in NLP
tasks also inspired new work in VQA. Yu et al. [49] created
the Transformer-inspired Modular Co-Attention Network
(MCAN) that combines self-attention with guided-attention
to leverage the interaction within and between modalities.
Jiang et al. [18] further built on this architecture and won the

2020 VQA Challenge. Tan and Bansal [44] improved input
encoding with a Transformer and transfer learning, while Li
et al. [23] modified input encodings by adding an object tag
to help align images and text semantically.

Supervision Using Human Attention. Despite its advan-
tages, it was also demonstrated that neural attention may
focus on the wrong area of an image [10, 11]. To rectify this,
human attention was brought in as an additional supervisory
signal. Researchers investigated differences between neural
and human attention in VQA [10, 11] and created datasets
containing human attention maps [10, 11, 14]. At the same
time, integrating human attention supervision showed to be
promising in closely related computer vision [21, 43] or NLP
tasks [7, 40]. Sood et al. [41] proposed a novel text saliency
model that, by combining a cognitive model of reading with
human attention supervision, set a new state-of-the-art on
paraphrase generation and sentence compression. For VQA
tasks, Gan et al. [15] combined human attention on images
and semantic segmentation of questions. Using ground truth
human attention, Wu and Mooney [46] penalized networks
for focusing on the wrong area of an image, while Selvaraju
et al. [34] guided neural networks to look at areas of an im-
age that humans judged as particularly relevant for question
answering. Chen et al. [10] continued in this direction by
using human attention to encourage reasoning behaviour
from a model. Since obtaining ground truth human attention
annotations is costly and time-consuming, Qiao et al. [32]
trained a network on the VQA-HAT dataset to automatically
generate human-like attention on unseen images, then used
these saliency maps to create the enhanced Human-Like
ATention (HLAT) dataset.

3. Method
The central contribution of our work is to propose MU-

LAN, the first multimodal method to integrate human-like
attention on both the image and text for VQA (see Figure 1
for an overview of the method). At its core, our method
builds on the recent MCAN model [48, 49], which won the
2019 VQA challenge as well as being the basis of the 2020
winning method utilizing grid features [18]. We adapted the
open source implementation1 and trained the small variant
of MCAN using grid features2. We first introduce the feature
representations and the MCAN framework and subsequently
explain our novel multimodal integration method3.

Feature Representations. We represent the input images
by spatial grid features, following the extraction methodol-
ogy of Jiang et al. [18]. A Faster R-CNN with ResNet-50

1github.com/MILVLG/openvqa
2github.com/facebookresearch/grid-feats-vqa
3Code and other supporting material can be found at perceptu-

alui.org/publications/sood23_gaze
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Figure 1. Overview of the Multimodal Human-like Attention Network (MULAN). Our method proposes multimodal integration of
human-like attention on questions as well as images during training of VQA models. MULAN leverages attention predictions from two
state-of-the-art text [41] and image saliency models [14].

backbone [17, 33] is pre-trained on ImageNet [12] and
VG [22] and then the object proposal and RoI pooling (used
for region features in Anderson et al. [4]) is removed. The
remaining ResNet directly outputs the grid features. We
obtain up to 19x32 features (depending on aspect ratio) per
image. The final image representation is X ∈ Rm×dx with
m ∈ [192, 608], where m represents the number of features,
and dx the feature embedding dimension.

The input questions are represented as in MCAN: tok-
enized at word-level, trimmed to n ∈ [1, 14] tokens and
represented using 300-D GloVe [31] word embeddings. The
n× 300 embeddings are further passed through a one-layer
LSTM with hidden size dy and all intermediate hidden states
form the final question representation matrix Y ∈ Rn×dy .
Both representations are zero-padded to accommodate the
varying number of grid features and question words.

Base model. In general, an attention function computes
an alignment score between a query and key-value pairs and
uses the score to re-weight the values. Attention methods
differ in their choice of scoring function, whether they at-
tend to the whole (global/soft) or only parts (local/hard) of
the input, and whether queries and key-value pairs are pro-
jections from the same inputs (self-attention) or different
inputs (guided attention). The Deep Modular Co-Attention
Network (MCAN) for VQA [49] is a Transformer-based
network [45] that runs multiple layers of multi-headed self-
attention (SA) and guided-attention (GA) modules in an
encoder-decoder architecture using the scaled dot-product
score function.

A schematic of an SA module is shown in Figure 2 in
gray. It consists of two sub-layers: the multi-headed atten-
tion and a feed-forward layer. Both are encompassed by a
residual connection and layer normalization. The attention
sub-layer projects the input feature embeddings into queries

Q ∈ Rn×d, keys K ∈ Rn×d, and values V ∈ Rn×d with
a common hidden dimension d. For a query q the attended
output is calculated with:

A(q,K, V ) = softmax(
qKT

√
d
)V (1)

As in the Transformer [45], this is calculated for multiple
queries at once with QKT and the results of several heads
with different projections for Q, K, V are combined.

The GA module is set up identically to the SA module ex-
cept the queries and key-value pairs are provided by separate
inputs. In this way, text features can guide attention on im-
age features. Intuitively, the attention layer reconstructs the
queries from a linear combination of the values, emphasiz-
ing interactions between them. The value space is projected
from the input features, which in the GA case is a fusion
space between the modalities.

The MCAN encoder stacks multiple layers of SA on text
features Y ∈ Rny×dy before feeding the result of the last
layer into the decoder. The decoder stacks modules with
SA on image features X ∈ Rnx×dx and GA between the
encoder result and the SA output. After the last layer, the
resulting feature matrices from both encoder and decoder are
flattened to obtain the attended features ỹ ∈ Rd and x̃ ∈ Rd

and fused by projecting them into the same space and adding
them. The VQA task is formulated as classification, so a
final projection into the answer dimension and a sigmoid
function conclude the network. Jiang et al. [18] improved the
performance of the original MCAN by replacing the region
image features with spatial grid features. We use their model
as a baseline for our experiments.

Human-Like Attention Integration. Although the impor-
tance of fusing both modalities has been underlined by many
previous works and is the driving idea behind co-attention,
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Figure 2. Schematic of a self-attention (SA) layer. The vanilla
SA layer is shown in gray, while our human attention integration
approach in red.

the integration of external guidance has only been explored
in the image domain [10, 15, 32, 34, 39, 46].

We integrate human-like attention into both the text and
image streams of the MCAN base model. For both streams,
we use the same basic principle of integration into SA mod-
ules (see Figure 2). We propose a new attention function AH

for the SA layer, multiplying human-like attention weights
α ∈ Rn (Rm for image features) into the attention score.
For the query qi corresponding to the i-th input feature em-
bedding, we calculate the i-th attended embedding:

AH(q,K, V, α) = softmax(
qiK

T · αi√
d

)V (2)

We integrate human-like attention on the question text
into the first SA module in the encoder part of MCAN (see
Figure 1) and on the image after the first GA module that
integrates text and image. This early integration is motivated
by Brunner et al. [9] who investigated the token mixing
that occurs in self-attention layers. They found that the
contribution of the original input token to the embedding
at the same position quickly decreases after the first layer,
making the integration of re-weighting attention weights less
targeted at later layers. We opted to integrate human-like
image attention in the SA module after the first GA module
(as opposed to before) because this allows text-attention
dependent features to interact during integration of human-
like attention on the image. To obtain human-like attention
scores for questions and images, we make use of domain-
specific attention networks that we discuss in the following.

Text Attention Model. For text, we make use of the re-
cently introduced Text Saliency Model (TSM) [41] that

Table 1. Results showing test-std and test-dev accuracy scores of
our model (trained on train+val+vg) and ablated versions over
different datasets. MULAN achieves competitive with state-of-the-
art for its model class on both benchmarks.

Model test-std test-dev

MULAN (multimodal) 73.98% 73.72%
Text only (TSM) 73.77% 73.52%
Image only (MDS) 73.67% 73.39%
No Integration 73.65% 73.39%

Li et al. (2020) 73.82% 73.61%
Jiang et al. (2020) 72.71% 72.59%

yields an attention weight for every token in the question.
TSM is pre-trained on synthetic data obtained from a cogni-
tive reading model as well as on real human gaze data. Sood
et al. [41] proposed a joint training approach in which TSM
predictions are integrated into the Luong attention layer [26]
of a downstream NLP task and fine-tuned while training for
this downstream task. We follow a similar methodology and
fine-tune the TSM while training our VQA network.

Image Attention Model. For images, we obtain human-
like attention using the state-of-the-art Multi-Duration
Saliency (MDS) method [14]. MDS predicts human atten-
tion allocation for viewing durations of 0.5, 3, and 5 seconds.
Because our integration approach requires a single attention
map per image, we use the output of MDS for the 3 second
viewing duration as suggested by the original authors. The
input images are of different aspect ratios which leads to
black borders in the obtained fixed-size MDS maps after
re-scaling. However, the grid features are extracted from
images with their original aspect-ratios. Therefore, to ob-
tain a single attention weight per feature, we remove the
borders from the MDS maps, overlay the grid features and
sum the pixel values in every grid cell. The values are then
normalized over the total sum to produce a distribution.

Implementation Details. We trained the network using the
basic configuration and hyperparameters of MCAN_small.
The input features were set to dy = 512 and after the change
to grid features, dx = 2048. The hidden dimension d inside
the Transformer heads was kept at 512. The increased di-
mensions in the MCAN_large configuration did not bring
performance advantages in our preliminary experiments, so
we opted for fewer parameters. In the added TSM model
we set the hidden dimension for both BiLSTM and Trans-
former heads to 128. We used 4 heads and one layer. Even
including the trainable parameters added by the TSM model,
our full MULAN model has significantly fewer parameters
than MCAN_large (MULAN: 58M, MCAN_large: 203M).
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We kept the MCAN Adam Solver and the corresponding
learning rate schedule and trained over 12 epochs with batch
size 64. The pre-trained TSM model is trained jointly with
the MCAN. Results on test-std were obtained after training
on train and val splits and a subset of Visual Genome vg,
for results on val we trained on train. We trained on single
Nvidia Tesla V100-SXM2 GPUs with 32GB RAM. Average
runtime was 2.6h for models trained on train (36h for con-
vergence) and 5.3h for models trained on train+val+vg (68h
for convergence).

4. Experiments

We used VQAv24, the balanced version [16] of the VQA
dataset [6], for all our experiments. VQAv2 is among the
most popular benchmark datasets in the field and contains
1.1M human-annotated questions on 200K images from MS
COCO [24], split into train, val, and test-dev/test-std sets.
The annotations for the test splits have been held back for on-
line evaluation of models submitted to the annual challenge.
The standard evaluation metric5 is simple overall accuracy,
for which agreement with three out of the 10 available an-
notator answers is considered as achieving an accuracy of
100%. In practice the machine accuracy is calculated as
mean over all 9 out of 10 subsets.

The standard evaluation is misleading because the same
overall accuracy can be achieved by answering very different
sets of questions. To address this issue, we evaluated overall
accuracy for comparison with other works, but also utilized a
“per question-type" binning approach [20, 42] to compensate
for class imbalance and answer bias skewing the evalua-
tion. For this, we used their question types that categorize
questions by the task they solve [20]. In addition, we used
the reading category proposed by Sood et al. [42] for ques-
tions that are answered by text on the image. Furthermore,
because Kafle and Kanan [20] only labelled about 8% of
VQAv2 val, Sood et al. [42] extended the annotation on the
full val set using a BiLSTM network pre-trained on TDIUC
(1.6M samples) and hand-crafted regular expressions (245K
samples). These additional annotations enabled us to assess
the performance changes of our model in more detail.

We performed a series of experiments to evaluate the per-
formance of our proposed method. To shed more light on
the importance of multimodal integration, we first compared
different ablated versions of our method on test-dev and test-
std. Specifically, we compared multimodal integration with
text-only, image-only, and integration of human-like atten-
tion. Afterwards, we validated our hypothesis in Section 3
that integration in early layers is more beneficial. To do this,
we trained multiple models integrating human-like attention
at different layers of the Transformer network. Finally, we

4visualqa.org/download.html
5visualqa.org/evaluation.html

Table 2. Layer-wise integration ablation study results, on test-std.
We integrate human-like attention at different layer combinations.
TSM question attention weights are integrated into encoder SA
modules, MDS image attention weights into decoder SA modules.

TSM MDS test-std

1 2 (ours) 73.98%
2 2 73.64%
1, 3, 5 2 73.73%
1 1–6 71.55%
1–3 2 73.49%
1–6 2 73.73%
1–6 2–6 73.50%

evaluated more fine-grained performance values of the mul-
timodal, unimodal, and no attention integration method for
the different question types. For all of these experiments, we
used fixed hyperparameters and report accuracy on test-std
with training on the union of train, val and vg sets.

Figure 3. Performance improvements of our multimodal integration
method (MULAN) relative to the baseline (No Integration), depend-
ing on the question length. Results show a significant increase in
accuracy for longer questions, in particular when questions have
seven or more tokens.

5. Results and Discussion
Overall Performance. Table 1 shows results of our MU-
LAN model along with current state-of-the-art approaches
and ablations of our method. Our method obtains compet-
itive with current state of the art models [23], reaching ac-
curacy scores of 73.98% on test-std and 73.72% on test-dev,
as compared to 73.82% and 73.61%. Our model also uses
approximately 80% less trainable parameters than Li et al.
[23]. Notably, we observe a systematic increase in perfor-
mance as a result of human-like attention integration. Our
base model without any integration reaches 73.65% on test-
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Table 3. Performance on VQAv2 val split in terms of per-question-type accuracy of the proposed multimodal integration method (MULAN)
and the unimodal ablations text-only or image-only and no integration of human attention (No Integration). Because the online evaluation of
VQAv2 only returns overall accuracy, we cannot obtain fine-grained accuracy for test-std or test-dev. A star indicates statistically significant
p at p < 0.05.

Question type Bin Size No Integration text-only image-only MULAN

reading 31 K 42.46 42.28 42.40 42.30
activity recognition 15 K 74.55 74.72 74.59 75.01
positional reasoning 26 K 61.74 61.97 61.85 62.01
object recognition 28 K 82.59 82.50 82.49 82.68
counting 24 K 59.77 59.70 59.44 59.82
object presence 17 K 86.45 86.47 86.59 86.57
scene recognition 15 K 79.19 79.10 79.20 79.19
sentiment understanding 14 K 83.59 83.77 83.53 83.92
color 25 K 80.56 80.52 80.31 80.56
attribute 4 K 69.36 69.09 69.37 69.65
utility affordance 11 K 66.33 66.40 66.64 66.42
sport recognition 6 K 85.39 85.38 85.93 85.60

Overall VQAv2 val Accuracy: 70.06 70.09 70.03 70.28*

MULAN

No Integration

epoch 1: "nothing" epoch 8: "refrigerator" epoch 13: "refrigerator"

epoch 1: "food" epoch 8: "food" epoch 13: "nothing"

Figure 4. Visualization of the weights in the attention reduction modules for text and image features. We compared MULAN and the
baseline model (No Integration) at epochs 1, 8, and 13. The input question was “What is the child digging around in?", the correct answer is
“fridge”. Classification outputs are given for each considered epoch.

std. While the integration of human-like attention on only
images (73.67%) or text (73.77% on test-std) can lead to an
increase in performance, our full MULAN model employ-
ing multimodal integration is the best performing approach.
This further underlines the importance of jointly integrating
human-like attention on both text and images for the VQA
task, which is inherently multimodal.

Layer-Wise Integration Experiments. We evaluated the
integration of human-like attention on questions and images
for different layers in the MCAN encoder-decoder architec-
ture (see Table 2). We investigated the integration of TSM

outputs into different SA layers of the encoder, and the in-
tegration of MDS outputs into different SA modules of the
decoder. Among all investigated combinations, the initial
integration into the first layer of the encoder and the sec-
ond layer of the decoder performed best (73.98% accuracy).
Integrating TSM predictions into the second encoder layer
decreased the overall accuracy to 73.64%, which is in line
with the reasoning discussed in Brunner et al. [9], where
with layer depth feature embeddings are increasingly mixed
and therefore less attributable to the input word token at the
same position. The TSM predicts attention weights for spe-
cific word tokens. We further investigated the integration of
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TSM and MDS predictions at multiple layers in the MCAN
architecture. However all options resulted in decreased per-
formance in comparison to MULAN. Our results indicate
that early integration of human-like attention at a single point
for both text and image is optimal for the VQA task.

Category-Specific Performance. To obtain a deeper un-
derstanding of our improvements over baseline approaches,
we categorized question types into 12 fine-grained bins, sim-
ilarly to Kafle and Kanan [20]. Table 3 shows a detailed
breakdown of accuracy results by category type. We used
the validation set, rather than the test set, since we needed
access to the ground truth annotations to calculate the per-
category accuracy. For the same reason, we can only perform
the paired t-test on the full validation set. As can be seen,
all ablated models obtain inferior performance to our full
model on the validation set (statistically significant at the
0.05 level). For most categories, MULAN achieves the high-
est accuracy. Moreover, in comparison to the baseline, our
method is the best performing one in 10 out of 12 categories
with especially clear improvements in activity recognition
and sentiment analysis categories. MULAN expectedly re-
duces accuracy on reading questions that other models can
most likely only answer by bias exploitation, and improves
on small bins like attribute. The distances between the mod-
els are small in absolute terms, but given the vastly different
bin sizes the relative improvements are large. This underlines
the robustness of improvements with human-like attention
integration and, in particular, multimodal integration.

Sequence-Length Analysis. Previous works have shown
that VQA models often converge to the answer after process-
ing only the first words of a question, a behavior that has been
characterized as “jumping to conclusions” [1]. Human-like
attention integration might be useful to combat this effect
as the TSM was previously shown to successfully predict
human-like attention distributions across all salient words in
the input sequence [41]. As this effect might be especially
pronounced for longer questions, we investigated whether
human-like attention integration in MULAN can especially
improve on those questions [1]. Figure 3 shows the results
of an evaluation where we analyzed the improvements of
our system relative to the baseline model, depending on the
question length. We find that while MULAN improves for
all questions independent of their length, its advantage is
especially significant for questions that contain seven tokens
or more (relative improvements of 0.3% or more), indicat-
ing that MULAN can improve upon the above-described
challenge.

Attention Visualizations. To further investigate MU-
LAN’s ability to answer longer questions than the baseline

model, we visualized the attention weights in the attention re-
duction modules after the encoder/decoder, which merge the
text and image features to one attended feature vector each.
These weights represent the final impact of the transformed
features. Figure 4 shows examples from the validation set
with the corresponding predictions comparing our method to
the baseline at epochs 1, 8 and 13. The input question was
“What is the child digging around in?” and the correct an-
swer is “fridge”. Our method it able to correctly predict that
the child is digging in the fridge as opposed to the baseline
that outputs “nothing”. MULAN focuses on both the token
“digging” as well as the location, which is in front of the
child. In contrast, the attention of the baseline model is more
spread out, failing to focus on the relevant cues. Interestingly,
the focus of attention in the baseline evolved over several
epochs of training, unlike MULAN which quickly converged
to a stable attention distribution. This indicates that initial
human-like attention maps on the image are indeed adapted
using attention-based information extracted from the ques-
tion text. Figure 5 shows three additional examples of our
method compared to the baseline from the final epoch. The
top and middle examples show how our method is able to
correctly answer the question, while the baseline fails. The
bottom example shows an error case of our method.

Limitations Our work is limited in that we do not fully ex-
plore the possible methods for integration in transformer net-
works. Recently works have investigate that specific layers
are more conducive to human gaze [8, 13]. Our layer-wise
experiments explore this direction, however in the future
we see the need for further investigation of more appropri-
ate layer specific integration strategies. We also identified
a some risks and ethical concerns. By aiming to integrate
human data into and neural attention layers of deep learning
models, we allow for the potential of user biases exploitation.
Perhaps, if there is work which uses our method, one could
develop a tool to discriminate against particular users based
on their attentive behaviors.

6. Conclusion

In this paper, we propose the first method for multimodal
integration of human-like attention on both image and text
for visual question answering. Our Multimodal Human-
like Attention Network (MULAN) method integrates state-
of-the-art text and image saliency models into neural self-
attention layers by modifying attention scoring functions of
transformer-based self-attention modules. Evaluations on the
challenging VQAv2 dataset show that our method not only
achieves competitive with state-of-the-art performance in its
model class (73.98% on test-std and 73.72% on test-dev), but
also does so with significantly fewer trainable parameters
than current models. As such, our work provides further
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Q: What is the baby sheep in the foreground doing?
A: nursing

MULAN: "nursing" No Integration: "eating"

Q: Is this a duck?
A: no

No Integration: "no"MULAN: "yes"

Q: Is the man sitting in the sun?
A: no

MULAN: "no" No Integration: "yes"

Figure 5. Visualization of attention distributions for MULAN and
the baseline (No Integration). The upper examples show improve-
ments of MULAN over the baseline, while the bottom shows a
failure case.

evidence for the potential of integrating human-like attention
as a supervisory signal in neural attention mechanisms.
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