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Abstract—Previous work on emotion recognition from bodily
expressions focused on analysing such expressions in isolation,
of individuals or in controlled settings, from a single camera
view, or required intrusive motion tracking equipment. We study
the problem of emotion recognition from bodily expressions
and speech during dyadic (person-person) interactions in a real
kitchen instrumented with ambient cameras and microphones.
We specifically focus on bodily expressions that are embedded
in regular interactions and background activities and recorded
without human augmentation to increase naturalness of the
expressions. We present a human-validated dataset that contains
224 high-resolution, multi-view video clips and audio recordings
of emotionally charged interactions between eight couples of
actors. The dataset is fully annotated with categorical labels for
four basic emotions (anger, happiness, sadness, and surprise) and
continuous labels for valence, activation, power, and anticipation
provided by five annotators for each actor. We evaluate vision and
audio-based emotion recognition using dense trajectories and a
standard audio pipeline and provide insights into the importance
of different body parts and audio features for emotion recognition.

I. INTRODUCTION

Emotions are an integral part of human communication
and manifest themselves in vocal prosody but also in body
movements, facial expressions, and gestures. Particularly body
movements induced by emotional responses, colloquially
referred to as body language, play a key role in non-verbal
human communication that is believed to represent a substantial
part of all human communication [1]. In contrast to facial
expressions, speech, as well as physiological parameters, such
as heart rate or galvanic skin response, analysis of body
language and recognition of emotions from bodily expressions
is less well-explored in affective computing. This is mainly due
to the significant challenge of recording and annotating natural
bodily expressions of emotions in everyday environments.
Consequently, previous works in affective computing mainly
focused on datasets recorded in artificial laboratory settings. In
these settings, individual actors were either positioned directly
in front of the camera [2] or couples of actors were recorded
using intrusive motion capture equipment to track their body
movements [3] (see Figure 2 for examples).

In this paper we investigate multimodal emotion recognition
from bodily expressions and speech recorded using unobtrusive
ambient cameras and microphones in a real kitchen environment
during naturalistic dyadic (person-person) interactions.

(a)$Surprise$and$Happiness

(b)$Surprise (c)$Sadness (d)$Happiness (e)$Anger

Fig. 1: Sample bodily expressions associated with different emotions
from our dataset.

We propose an experimental setup and methodology that
allows us to systematically record such bodily expressions
embedded in regular interactions and background activities. To
this end, we develop a set of scenarios that evolve around daily-
life events and that lead to an emotionally charged conversation
between two people. Each scenario is endowed with background
information on the attitude of each person towards the event. We
then film multiple pairs of actors role-playing and improvising
each scenario in a fully functional apartment kitchen to closely
resemble natural everyday living conditions (see Figure 1 for
examples).

We took particular care to not script actors’ performance, i.e.
the only information we provided was a high-level background
description of the scenario and emotional responses each of
the actors was supposed to exhibit. In particular, we did
not instruct actors how to role-play each scenario, or which
bodily expressions or motions they should use to express
a particular emotion. Instead, actors were free to interact
with the environment and move around inside the kitchen.
They were also not encumbered by wearing motion capture
equipment, which made their bodily expressions more natural.
The resulting MPIIEmo dataset including all annotations will
be made publicly available upon publication.

The contributions of this work are threefold. First, we present



Fig. 2: Sample scenes of emotionally charged person-person interac-
tions from our dataset (top). Samples from GEMEP [2] (bottom left)
and CreativeIT [3] (bottom right) datasets.

GEMEP MPIIEmo (ours)

Fig. 3: Examples of audio spectrograms computed on GEMEP [2] and
our MPIIEmo dataset. Blue curves correspond to pitch trajectories
extracted with the approach described by Kasi and Zahorian [4]. Note
that the spectrogram on GEMEP is cleaner which enables more robust
pitch extraction.

an experimental set-up and methodology to unobtrusively
collect video and audio data of actors engaged in person-
person interactions in an everyday environment. The set-up and
methodology were specifically developed to balance between
the realism of the exhibited bodily expressions as well as the
ability to study emotions that are difficult to record in real-
world situations. Using this methodology, we further introduce
the MPIIEmo dataset that contains 224 high-quality video
and audio recordings of eight couples of actors engaged
in emotionally-charged, natural interactions revolving around
everyday scenarios. To the best of our knowledge, this is the first
dataset of full-body videos of dyads of unaugmented people in
affective interactions. It features a mix of emotional expressions
embedded in a regular conversation and background activities,
is fully-annotated with both categorical and continuous emotion
labels, and provides multiple synchronised camera views. Third,
we evaluate an approach for emotion recognition from video
based on dense trajectories [5] and body part detections and

provide insights into the relative importance of body parts for
emotion recognition. We further study emotion classification
from audio [6], highlighting difficulties of audio feature
extraction on our dataset compared to the more constrained
GEMEP dataset.

II. RELATED WORK

Our work is related to previous work that 1) explored the
close link between emotions and body movements, 2) focused
on recording bodily expressions of emotions, and 3) developed
computational methods for human behaviour analysis.

A. Emotions and body movements
Humans are skilled in expressing emotions through non-

verbal signals and in interpreting signals of others but relating
body movements to specific emotional expressions is chal-
lenging given the subtleness of these movements. Efforts to
clarify connections between emotions and body movements
have a long history in behavioural science and suggested a
strong connection exists between emotions and body move-
ments [7, 8, 9]. Analysis of emotional body movements has
since sparked a large body of work in social signal processing
and affective computing, focusing on both encoding body
movements in a similar fashion as facial expressions [10, 11] as
well as inferring emotions from body movements [12, 13, 14]
(see [15, 16, 17, 18] for reviews).

B. Recording bodily expressions of emotions
Several previous works investigated bodily expressions of

emotions of individuals, either involving directed or at least
carefully executed bodily expressions while facing the cam-
era [2, 19, 20] or using body motion capture suits in controlled
laboratory settings [21]. Previous works that studied bodily
expressions during person-person interactions were either
limited to only one person showing affective behaviour [22], to
sitting people [23] or also used artificial settings and required
sophisticated human augmentation [3, 24] (see Čereković [25]
for a recent survey). Previous works also often only included
short snippets of isolated bodily expressions that were neither
embedded in natural background activities nor interactions with
the other person or the environment [2, 21].

Our methodology is most similar to the one described
by Metallinou et al. [3] but aims to increase realism of
the recorded data while still retaining the ability to obtain
laboratory-standard recording quality and accurate ground truth
annotations. Specifically, our dataset contains bodily expres-
sions of emotions during naturalistic person-person interactions,
i.e. interactions that develop around everyday events and that
are therefore embedded in casual body movements as well as
interactions with the other person and the environment. As
described in [2, 3] and following guidelines from [26, 27] we
rely on recruited actors to improvise emotional expressions.
Our dataset further contains two schemes for representation
and annotation of emotional content, namely both categorical
emotional labels [2] and continuous affect dimensions [28].
Sample scenes from two existing datasets as well as our own
are shown in Figure 1.



C. Human behaviour analysis

Computational methods to analyse human behaviour either
rely on on-body sensors, such as inertial measurement units,
or ambient sensors, such as video cameras. On-body sensors
are widely used in human activity and gesture recognition [29].
While current activity recognition systems achieve good
performance for many activity recognition tasks, the majority
of research focuses on recognising “which” activity is being
performed at a specific point in time. More closely related to
the problem investigated in this work, is qualitative activity
recognition that studies means to extract qualitative information
from inertial data, such as the quality or correctness of
executing an activity. Such qualitative assessments are more
challenging to perform automatically and have so far only
been demonstrated for constrained settings, such as in sports.
Specifically, previous works studied qualitative assessment
of activities such as weight-lifting [30, 31, 32], rowing [33]
or balance board exercises [34]. Recent computer vision
works on human behaviour analysis mainly focused on basic
recognition tasks, such as people detection [35], pose estima-
tion [36, 37, 38], and recognition of fine grained details, such
as appearance attributes [39], body and head orientation [40],
gaze direction [41], detection of facial key-points [42], or social
signals, such as holding hands or hugging [43]. In this work
we investigate how recent advances in computer vision enable
recognition of bodily expressions of emotions in video. In
particular, we build on [5] that was previously used for activity
recognition and [44] for body pose estimation.

III. THE MPIIEMO DATASET

Collecting video and audio footage of bodily expressions
of emotions in everyday settings is challenging. In addition to
the scarcity of such situations in daily life, legal and ethical
issues pose significant challenges for the collection of real-
world behavioural data. Similar to Busso and Narayanan [26]
and Scherer and Bänziger [27] we therefore opted to rely on
acted performances and recorded couples of actors interacting
with each other in a naturalistic environment (an apartment
kitchen).

A. Data recording

We designed the data recording with two main objectives in
mind: 1) to record video and audio footage of person-person
interactions in a real kitchen setting and without on-body
motion capture equipment that could affect the realism of these
interactions, and 2) to record bodily expressions of emotions
that are embedded in regular interactions and background
activities commonly performed in the kitchen.

1) Recording setup: We recorded video and audio footage us-
ing eight ceiling-mounted, frame-synchronized machine vision
cameras recording at 29.4 fps and four microphones, covering
the whole interaction space inside the kitchen (see Figure 6).
In total, we recorded eight pairs of actors (three female only,
two male only, three mixed), with each pair performing seven
scenarios, each consisting of four subscenarios. This resulted in
224 video clips with a total length of 143 minutes or 252,457
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Fig. 5: Sample frames from a sequence with annotations for valence
of the female subject with pose estimates. At about 20 seconds the
couple gets into an argument about throwing away the garbage, as
indicated by a more negative valence rating (cf. Figure 4).

Fig. 6: Kitchen environment used for recording our dataset. The
kitchen was fully functional and instrumented with ceiling-mounted
cameras (red circles) and microphones (blue circles).

frames. The average length of the recorded video clips in
our dataset was around 38 seconds. The subscenarios were
different variations of the overall scenario covering the display
of different emotional responses. We designed each subscenario
to correspond to a short conversations with the overall objective
to record a diverse set of interactions that felt natural to the
actors. According to these criteria, scenarios and subscenarios
were selected from a pool of proposals by testing them in trial
runs.

A sample scenario from our dataset is shown in Figure 4. In
this scenario, one person reminds the other that it is his turn
to empty the waste bin. The subscenarios then evolve around
different reactions of the second person. He is either happy to
be reminded, angry at the annoying reminder, angry at himself
for forgetting about it again, or surprised because it’s not his



He is happy with her.
He also applied for the same job.
He is angry, because she talks

happily about her new job.

He is sad because her new job
means, she will soon move away.

They had a close relationship. She
also becomes sad.

He is surprised because she told
before, how hard it is to get the
job. She is proud (occurs later in

the sequence).

Fig. 4: Sample scenario from our dataset. Each picture illustrates one subscenario. The high-level scenario description was: She just received
an offer for the job she always wanted. She enters the kitchen and tells the news happily.

turn. The first person then reacts accordingly. The full list of
all scenarios and subscenarios will be released with the dataset.

2) Recording methodology: Actors were recruited from
local student theatre groups and selected based on their
acting abilities. All actors had at least one year of theatre
training and were practising improvisation as a part of it.
However, most actors were much more experienced, and half
of them were, among others, part of a group dedicated solely
to improvisational theatre. A director from a local theatre
group worked with the actors during the recording. Actors
were given short descriptions (about 1-3 sentences) of the
scenarios and subscenarios, including explicit statements about
the emotions and feelings involved in the interaction. Four
of the six basic emotions by [45] were explicitly referred to:
Happiness, Anger, Sadness and Surprise. Due to the freedom
of improvisation, emotional expressions not covered by those
four were shown as well as mixtures of several emotions.
If necessary for the actors to become more familiar with a
subscenario, additional background information was provided
by the experimental assistant. In case the actors had problems
to access the required emotions, the director used reenactment
techniques as in [2]. Otherwise the actors were free to improvise.
In particular, no instructions concerning concrete verbal or non-
verbal expressions or gestures were given. Actors did not wear
any specific clothes, could move freely inside the kitchen, and
were free to interact with the kitchen itself as well as all objects,
tools etc. in it. Each subscenario was repeated until the actors
and the director were satisfied with the performance.

B. Groundtruth annotation

Two well-known models to describe emotions are the
categorical and the dimensional emotion model. Categorical
representations discretise the space of emotions and put labels
like “Happiness” or “Surprise” to individual emotions. Recently,
researchers in affective computing argued for the use of
dimensional emotion models understanding affect as a real-
valued vector [46]. Our dataset provides annotations for both
emotion models. We used a subset of the well-known six basic
emotions [45], namely anger, happiness, sadness, and surprise.
For the dimensional model, we used the four dimensions
valence, activation, power and anticipation as suggested by [47].

Scale macc map F 1 F 2 F 3 F 4 F 5
Happiness 91.01 88.61 32.72 26.44 21.07 17.06 11.25
Anger 94.98 91.26 24.63 20.17 17.56 15.33 11.62
Sadness 94.62 79.60 18.46 12.25 9.14 6.71 5.41
Surprise 84.66 44.86 43.35 21.40 13.53 7.09 2.41

TABLE I: Performance evaluation of human annotators. “macc” and
map” correspond to “mean accuracy” and “average precision”. “F k”
is the relative frequency of the emotion class when agreement of k
annotators is required to mark a sample as positive.

In our setting valence intuitively describes whether the actor
felt “good” or “bad”, activation concerned his activeness vs.
in-activeness, power referred to whether he felt in control
of events, and anticipation varied between the actor being
surprised and feeling he could foresee the future.

We extended the annotation tool GTrace [48] to support
both emotion models. Annotations were performed by five
psychology students (three female), instructed with descriptions
of the different emotions as well as example video clips from
a separate test recording. We then asked the annotators to
label all video clips in randomized order, sequentially for both
actors, and for each actor using first the dimensional and then
the categorical emotion model. For the dimensional model we
obtained continuous annotations across the whole sequence.
For the categorical model, annotators were asked to select a
subset of the six basic emotions for each actor in a clip. If
an emotion was selected, its intensity was rated continuously
in the same way as for the scales of the dimensional emotion
model.

C. Analysis of annotations

We analysed the quality of both dimensional and categorical
ground truth annotations:

a) Dimensional emotion model.: We quantified the agree-
ment between annotators by computing the median of the
Pearson correlation coefficients between all pairs of annotators.
The correlations were computed across all frames. We obtained
a high median correlation for valence (0.84), moderate median
correlations for Power (0.67) and Activation (0.65), and a low
correlation for Anticipation (0.42).

b) Categorical emotion model.: We aggregated annota-
tions over several annotators to get discrete labels for all



emotion categories. Prior to aggregation we normalized the
intensity ratings of each annotator by subtracting the mean and
dividing by the variance across all videos. When computing
the mean and variance for a particular emotion we assigned a
zero intensity rating to all videos where this emotion was not
labelled as present. For simplicity, we afterwards discretized the
intensity ratings into binary emotion category labels separately
for each annotator by thresholding the normalized intensity
at 1. Finally, we defined the emotion label for a frame by
requiring k = 2 annotators to agree that the emotion is present
in this frame.

Table I (left) shows the mean accuracy and mean average
precision for emotion recognition achieved by our annotators.
The results are obtained by using three annotators to generate
ground-truth labels and comparing it with the output of the
remaining two annotators, repeating the process for all com-
binations of annotators. To calculate mean average precision,
we used the ordering of data points induced by the annotators
ratings. As can be seen from the table, while Happiness, Anger
and Sadness are quite accurate, Surprise has a low mean
average precision. The reason for this is that Surprise (like the
related Anticipation scale) is often very strictly localized in
time. In consequence, person-specific delays of the annotators
introduce a lot of label uncertainty. Table I (right) shows the
relative frequency of the positive class on the whole dataset
for different values of k. We observe that agreement across
annotators varies significantly across emotions. For example
there is approximately two-fold decrease between k = 2 and
k = 5 for Anger (20.17 vs. 11.62) whereas we observe nearly
ten-fold decrease for Surprise (21.40 vs. 2.41). We can observe
a similar pattern when quantifying agreement of annotators
by computing the median of their correlations. We get high
correlations for Anger (0.87), Happiness (0.82) and Sadness
(0.83), but a low correlation for Surprise (0.48).

IV. EMOTION CLASSIFICATION FROM VIDEO AND AUDIO

To establish baseline performances for emotion classification
on our MPIIEmo we evaluated approaches from computer
vision and speech analysis. In the visual domain, we further
examine the influence of different body parts and the inter-
locutor. In the audio domain, we compare several features that
are commonly used for emotion classification from speech
with respect to their performance on MPIIEmo as well as the
well-established GEMEP dataset [2].

A. Video

We use dense trajectories, a recently introduced video
descriptor which showed state-of-the-art performance for
human activity recognition [5]. By using pose estimates, we
can in- or exclude dense trajectories from different body parts
or persons, which allows us to estimate their importance for
emotion recognition in our framework.

1) Pose estimation: To estimate poses of people we train a
set of body part detectors building on the convolutional neural
network architecture of [44]. The detector in [44] is trained by
minimizing a multi-task loss function that combines detection

accuracy and accuracy in prediction of the object bounding
boxes. When applying this approach to pose estimation we
substitute the bounding box prediction component with a
component that predicts locations of the neighboring body
part. We train detectors for the head, shoulder and wrist. Wrist
and shoulder detectors are trained to also predict the location
of the elbow joint. Each shoulder and wrist detection thus
generates a pair of body joints corresponding to either upper
arm or lower arm segments respectively.

In the first step each part detector is densely evaluated in
each camera view resulting in an initial set of candidate part
hypothesis. In the second step we refine the body part detections
using multi-view constraints. To that end we match the body
segments across camera views and generate a set of 3D body
segment candidates using triangulation. In the process we also
discard segments with high reconstruction error, which allows
us to filter out false positive detections. In the final step we
assemble 3D full-body configurations from the available pool of
body segments using constraints on the relative position of head,
and upper and lower arms. This process results in high-quality
3D pose estimates for both subjects in the majority of the
images. The remaining failures in pose estimation correspond
to cases with particularly strong occlusions or rare poses such
as subjects bending under the kitchen counter.

2) Identity annotation: The pose estimates are not associated
with individual actors. To add personal identities, we annotate
which actor is rightmost in one of the camera views and match
this annotation to one of the two estimated body configurations.

3) Dense trajectories on body parts: We compute dense
trajectories from a single view (the one in Figure 5), and
associate them with 2D person and body part bounding boxes. A
trajectory is associated with a bounding box if its starting point
(x, y, t) is inside the bounding box at time t. We build separate
codebooks for each of the five feature channels of the dense
trajectory descriptor using k-means clustering with N = 4000
centroids on 100,000 trajectories randomly sampled from the
training set. Depending on the experimental condition, we
build separate codebooks for different body parts. For training
and testing, we compute histograms over a time window of 2
seconds separately for each actor.

4) Classification: We apply SVM with a RBF-χ2 kernel k
as in [49]. The L feature channels are combined by normalizing
their corresponding χ2 distances separately using the means
of the χ2 distances of the feature channels on the training set:

k(x, y) = exp(− 1

L

L∑
c=1

χ2(xc, yc)

Ac
). (1)

Here χ2(x, y) denotes the χ2 distance between x and y, xc
the c-th feature channel of example x and Ac the mean χ2

distance for feature channel c on the training set.

B. Audio

We compute three features commonly used for emotion
recognition from speech [6]: (1) non-zero pitch values, (2)
spectral centroid and spectral flatness of the timbre and (3)



Method Happiness Anger Surprise Sadness Average
full 48.0 28.4 24.6 16.8 29.5
full-hw 41.5 26.0 23.2 15.5 26.5
full-head 46.5 26.6 23.8 15.6 28.1
wrist 44.3 25.2 21.8 16.2 26.7
head 50.7 32.9 26.2 18.2 32.0
head-single 46.9 27.9 20.0 15.7 27.6

posrate 21.7 18.5 13.8 10.2 16.1

TABLE II: Mean average precision in percent for leave-one-recording-
out cross-validation on our MPIIEmo dataset. “head”, “wrist” and
“full” denote using trajectories on the head, wrist or the full body,
respectively. “full-head” denotes using all trajectories except head,
and “full-hw” all trajectories except head and wrist. “head-single”
denotes using trajectories from the target person only.

short time energy of the audio signal. The mean and standard
deviation of these features are computed for frames of 30ms
with 10ms hops, yielding an 8 dimensional feature vector for
each frame. Classification is performed by using SVM with an
RBF kernel and cross-validating the hyperparameters C and γ
on the training set.

V. EXPERIMENTS

A. Video

We report results on the detection of four types of emotional
states. The detection is performed using a sliding window
approach with a stepsize of 2 seconds. To compare detection
results to human performance in Table I we generate labels from
a fixed set of 3 annotators. Each window is then considered
as positive for a given emotion category if at least half
of the frames in that window are labelled positively by at
least two annotators. A separate classifier is trained for each
emotion category against other emotions and background. The
regularization parameter C is selected by cross-validation in the
training set. We report performance using the average precision
metric as is common in human activity detection [5].

To quantify the contribution of different body parts, we
compare different ways of selecting trajectories (see Table II).
First, we investigate differences in performance due to exclusion
of trajectories associated with certain body parts (conditions
full, full-head, full-hw in Table II). We observe, that removing
trajectories from the head lowers the performance for all
emotions, whereas additionally removing trajectories from the
wrists only results in a significant performance drop for the
Happiness class. Secondly, we investigate the performances of
classifiers based exclusively on trajectories associated with the
head and the wrist. We find, that using trajectories from the
head results in better performance and, more surprisingly it
even outperforms full on all emotions. Finally, we pick the best
performing condition to quantify the contribution of features
extracted from the interlocutor. When removing those features
(head-single), performance drops significantly.

When comparing these results with the performance of
human annotators in Table I, we note that human performance
is strongly superior for all emotion classes.

Dataset Pitch Timbre Energy All MLK
GEMEP 53.9 58.9 48.7 64.1 26.0
MPIIEmo 36.5 41.1 41.0 43.2 35.0

TABLE III: Results for emotion classification using audio features.
MLK denotes the probability of the most likely class in percent points.

B. Audio

We compare the performance of pitch-, timbre- and energy-
based features on MPIIEmo. As a reference we also report
results on the more controlled, single-actor GEMEP dataset.
To align the experimental setups, we pick the 4 classes from
GEMEP that are most similar to the 4 emotions on MPIIEmo
(Anger, Joy, Sadness, Surprise), resulting in 39 examples. For
MPIIEmo, we extract two second long training windows, with
10Hz sampling frequency, excluding all windows that had either
multiple labels per actor, or no label at all (background). Note,
that we construct examples without speaker separation, as first
experiments using ICA indicated that this is a difficult task
on MPIIEmo. As a result, the same features might appear in
different classes if the two actors were given different labels
in one window, making our task inherently more difficult than
the one we defined on GEMEP. To compute the test error,
we use leave-one-sequence-out cross-validation on GEMEP
and leave-one-couple out cross-validation on MPIIEmo. The
results (Table III) show, that combining all features achieves
the best performance. Surprisingly, although pitch performs
well on GEMEP and in prior research [50], it is near chance
on MPIIEmo. Upon closer inspection, the bad performance
on MPIIEmo can be explained by the difficulties for pitch
extraction arising from the more realistic recording situation
with microphones being at a distance from the speakers
(cf. Figure 3).

VI. CONCLUSION

In this paper we proposed a new experimental setup
and methodology to record bodily expressions of emotions
embedded in everyday person-person conversations as well as
background activities. Using this methodology, we presented
the fully annotated MPIIEmo dataset that contains 224 high-
resolution, multi-view video clips and audio recordings of
emotionally charged interactions between eight couples of
actors. We established baseline performances for emotion
classification from both video and audio. We found that visual
features computed from the head as well as the interlocutor
were particularly important to achieve good performance,
and that the more naturalistic recording setup on MPIIEmo
poses challenges for audio feature extraction. To spark further
research on this challenging emotion classification problem,
the full dataset including all body pose estimates as well as
categorical and continuous emotion annotations is publicly
available.
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