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Abstract
In this paper we present Pupil – an accessible, affordable,
and extensible open source platform for pervasive eye
tracking and gaze-based interaction. Pupil comprises 1) a
light-weight eye tracking headset, 2) an open source
software framework for mobile eye tracking, as well as 3) a
graphical user interface to playback and visualize video
and gaze data. Pupil features high-resolution scene and
eye cameras for monocular and binocular gaze estimation.
The software and GUI are platform-independent and
include state-of-the-art algorithms for real-time pupil
detection and tracking, calibration, and accurate gaze
estimation. Results of a performance evaluation show that
Pupil can provide an average gaze estimation accuracy of
0.6 degree of visual angle (0.08 degree precision) with a
processing pipeline latency of only 0.045 seconds.
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Computing; Gaze-based Interaction

ACM Classification Keywords
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Introduction
Recent advances in head-mounted eye tracking and
automated eye movement analysis point the way toward
unobtrusive eye-based human-computer interfaces that are
pervasively usable in everyday life. This new paradigm is
called pervasive eye tracking - continuous eye monitoring
and analysis [2]. The ability to track and analyze eye
movements anywhere and at any time will enable new
research to develop and understand visual behavior and
eye-based interaction in daily life settings.

Commercially available head-mounted eye tracking
systems are robust and provide useful features to
customers in industry and research, such as for marketing
studies, website analytics, or research studies. However,
commercial systems are expensive, therefore typically used
by specialized user groups, and rely on closed source
hardware and software. This limits the potential scale and
application areas of eye tracking to expert users and
inhibits user-driven development, customization, and
extension. Open source software (OSS) eye trackers have
emerged as low cost alternatives to commercial eye
tracking systems using consumer digital camera sensors
and open source computer vision software
libraries [1, 8, 13, 9, 10, 11, 4, 16]. The OSS route
enables users to rapidly develop and modify hardware and
software based on experimental findings [2].

We argue that affordability does not necessarily align with
accessibility. In this paper we define accessible eye
tracking platforms to have the following qualities: open
source components, modular hardware and software
design, comprehensive documentation, user support,
affordable price, and flexibility for future changes.
Towards this goal we describe Pupil, a mobile eye tracking
headset and an open source software platform as an

Figure 1: Front rendering of the Pupil Pro headset (rev 20)
showing the frame, tiltable scene camera and adjustable eye
camera.

accessible, affordable, and extensible tool for pervasive eye
tracking research. We explain the design motivation,
provide an in depth technical description of both hardware
and software, and provide an analysis of accuracy and
performance of the system.

System Overview
Pupil is a mobile eye tracking headset with one scene
camera and one infrared (IR) spectrum eye camera for
dark pupil detection. Both cameras connect to a laptop,
desktop, or mobile computer platform via high speed USB
2.0. The camera video streams are read using Pupil
Capture software for real-time pupil detection, gaze
mapping, recording, and other functions.
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System Design Objectives
We made several design decisions while satisfying a
number of factors to balance ergonomic constraints with
performance. Pupil leverages the rapid development cycle
and scaling effects of consumer electronics - USB cameras
and consumer computing hardware - instead of using
custom cameras and computing solutions. Pupil headsets
are fabricated using Selective Laser Sintering (SLS)
instead of established fabrication methods like injection
molding. This rapid fabrication process accommodates
frequent design changes, comparable to the continuous
development of Pupil software. We employed modular
design principles in both hardware and software to enable
modifications by users. Pupil software is open source and
strives to build and support a community of eye tracking
researchers and developers.

Figure 2: Rendering
demonstrating the range of
motion of the world camera
(scene camera) mount and
connection to the frame.

Figure 3: Rendering
demonstrating the range of
motion of the eye camera mount
and connection to the frame.

Pupil Headset Design and Hardware
Factors that influence the headset design are: mobility,
modularity and customization, minimizing visual
obstruction and weight, accommodation of various facial
geometries, minimization of headset movement due to
slippage and deformation, durability, and wear comfort.

Headset
The Pupil headset is made up of three modules: frame,
scene camera mount, and eye camera mount.

Frame
The frame was designed based on a 3D scan of a human
head and iteratively refined to accommodate physiological
variations between users. We developed a novel design
process where we apply specific forces to deform the
headset model using Finite Element Analysis (FEA).

We use Finite Element Analysis (FEA) to apply forces
that push the earpieces of the frame together. We print

the resulting deformed geometry from the simulation.
When the user puts on the headset, the earpieces of the
frame are pushed apart, and the entire frame flexes open.
This process ensures that cameras align as designed when
the headset is worn and results in a comfortable, snug
fitting, and lightweight (9g) frame.

Camera Mounts
Camera mount geometries are hosted in a Git repository.
By releasing the mount geometry we automatically
document the interface, allowing users to develop their
own mounts for cameras of their choice. The scene
camera mount connects to the frame with a snap fit
toothed ratcheting system that allows for radial
adjustment within the users vertical field of vision (FOV)
along a transverse axis within a 90 degree range. The eye
camera mount is an articulated adjustable arm
accommodating variations in users eyes and face
geometries. The camera mount attaches to the frame
along a snap fit sliding joint. The eye camera orbits on a
ball joint that can be fixed by tightening a single screw.

Cameras
Pupil uses USB cameras that comply with the UVC
standard. Other UVC compliant cameras can be used
with the system as desired by the user. The Pupil headset
can be used with other software that supports the UVC
interface. Pupil can be easily extended to use two eye
cameras for binocular setups and more scene cameras.

Computing Device
Pupil works in conjunction with standard multipurpose
computers: laptop, desktop, or tablet. Designing for user
supplied recording and processing hardware introduces a
source for compatibility issues and requires more setup
effort for both users and developers. However, enabling
the user to pair the headset with their own computing
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Figure 4: Screen capture of Pupil Capture. Left) World window displays real-time video feed of the user’s FOV from the scene camera
along with GUI controls for the world camera and plugins. Red circle is the gaze position of the user. Top Right) Eye window displays
real-time video feed of the user’s eye. Bottom Right) Plugin window plugins can also spawn their own windows. Shown here is a plugin
to visualize the pupil detection algorithm.

platform makes Pupil a multipurpose eye tracking and
analysis tool. Pupil is deployable for lightweight mobile
use as well as more specialized applications like: streaming
over networks, geotagging, multi-user synchronization;
and computationally intensive applications like real time
3D reconstruction and localization.

Pupil Software
Pupil software is divided into two main parts, Pupil
Capture and Pupil Player. Pupil Capture runs in real-time
to capture and process images from the two (or more)
camera video streams. Pupil Player is used to playback
and visualize video and gaze data recorded with Pupil
Capture. Source code is written in Python and C. Pupil

software can be run from source on Linux, MacOS, and
Windows or executed as a bundled double click
application on Linux and MacOS.

Pupil Detection Algorithm
The pupil detection algorithm locates the dark pupil in the
IR illuminated eye camera image (see Figure 6). In most
environments, the algorithm is robust against reflections
in the pupil area. Furthermore, the algorithm does not
depend on the corneal reflection for detection, and works
with users who wear contact lenses and eyeglasses.

The eye camera image is first converted to grayscale. The
initial region estimation of the pupil is found via the
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strongest response for a center-surround feature as
proposed by Swirski et al. [15] within the image.

Fig 6-1) We use Canny [3] to find contours in the image
and filter edges based on neighboring pixel intensity. Fig
6-2) We then look for darker areas (blue region) using a
user-defined offset of the lowest spike in the histogram of
pixel intensities in the eye image. Fig 6-3) We filter
remaining edges to exclude those stemming from spectral
reflections - yellow region. Remaining edges are extracted
into into contours using connected components [14]. Fig
6-4) Contours are filtered and split into sub-contours
based on criteria of curvature continuity. Fig 6-5)
Candidate pupil ellipses are formed using ellipse fitting [5]
onto a subset of the contours looking for good fits in a
least square sense, major radii within a user defined range,
and a few additional criteria. A combinatorial search looks
for contours that can be added as support to the
candidate ellipses. The results are evaluated based on the
ellipse fit of the supporting edges and the ratio of
supporting edge length and ellipse circumference (using
Ramanujans second approximation [7]). We call this ratio
“confidence”. Fig 6-6) If the best results confidence is
above a threshold the algorithm reports this candidate
ellipse as the ellipse defining the contour of the pupil.
Otherwise the algorithm reports that no pupil was found.
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Figure 5: 1) Benchmark
comparison 4 pupil detection
algorithms. (Figure data for
algorithms other than Pupil used
with permission of Swirski.) 2)
Pupil’s detection algorithm
comparison between full
benchmark dataset and subset.

Figure 5 shows a performance comparison between Pupil’s
pupil detection algorithm, the stock algorithm proposed by
Swirski et al., the ITU gaze tracker, and Starburst on the
benchmark dataset by Swirski et al. [15]. As error measure
we used the Hausdorff distance between the detected and
hand-labeled pupil ellipses [15]. We additionally
conducted a test excluding the dataset p1-right, that
contains eye images recorded at the most extreme angles,
as those do not occur using Pupil hardware.

1 2 3

654

Figure 6: Visualization of pupil detection algorithm.

Fig 5-2 is a more accurate demonstration of how Pupil
performs in real life conditions. Pupil achieves a detection
rate of 80% with an error threshold of 2 pixels; at 5 pixels
error detection rate increases to 90%.

Gaze Mapping
Mapping pupil positions from eye to scene space is
implemented with a transfer function consisting of two
bivariate polynomials of adjustable degree. The user
specific polynomial parameters are obtained by running
one of the calibration routines using screen markers,
manual markers or natural features. Calibration and
mapping functions are abstracted and the underlying
models can easily be modified and replaced if needed.

Surface Detection
Pupil Capture can detect planar reference surfaces in the
scene using markers. There are 64 unique markers. A
minimum of 1 marker is required to define a surface. Gaze
positions are mapped into the reference surface coordinate
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system using homographic transformations between the
scene camera plane and reference surface plane.

Recording
Pupil Capture can record the scene and eye videos,
associated frame timestamps, detected pupil and gaze
position data, and additional user activated plugin data.

Streaming
Pupil Capture can send real-time gaze and pupil
information as well as plugin generated data via ZMQ to
other applications and network enabled devices. Please see
further documentation on our wiki: https://github.com/

pupil-labs/pupil/wiki/Pupil-Capture#pupil-server

Plugin Structure
Even a standard feature, like recording a video, is
abstracted as a plugin. This level of abstraction and
modularity allows for users to develop their own tools even
for low level functionality. In Pupil Capture plugins can be
launched in either world or eye processes. The modular
structure makes it easy to for users to test out different
methods at runtime and for developers to extend software
without breaking existing functionality. Plugins have the
ability to create their own GUI within the process window,
access to shared memory like gaze data, and spawn their
own windows. Please see our wiki for further
documentation on developing plugins: https:

//github.com/pupil-labs/pupil/wiki/Plugin-Guide

Performance Evaluation
Spatial Accuracy and Precision
As performance metrics for spatial accuracy and precision
of the system we employ the metrics defined in COGAIN
Eye tracker accuracy terms and definitions [12]

“Accuracy was calculated as the average angular offset

(distance) (in degrees of visual angle) between fixations
locations and the corresponding locations of the fixation
targets.”

“Precision was calculated as the Root Mean Square
(RMS) of the angular distance (in degrees of visual angle)
between successive samples to xi, yi to xi+1,yi+1.”

We evaluated the performance in an indoor environment
using the following procedure: A subject wearing the Pupil
Pro eye tracker sat approximately 0.5m away from a 27
inch computer monitor. The eye tracker was calibrated
using the standard 9-point screen marker based calibration
routine in full screen mode. After calibration the subject
was asked to fixate on a marker on the monitor. The
marker sampled 10 random positions for 1.5 seconds and
then revisited each of the 9 calibration positions. While
the marker was displayed, gaze samples and the position
of the marker detected in the scene camera were recorded.
The data was then correlated into gaze point and marker
point pairs based on minimal temporal distance. Gaze
point marker point pairs with a spatial distance of more
than 5 degrees angular distance were discarded as outliers
as they do not correlate to system error but human error
(no fixation, blink) [6].

Accuracy and precision were calculated in scene camera
pixel space and converted into degrees of visual angle
based on camera intrinsics.

This procedure was repeated with eight different subjects
to reflect a more diverse pool of physiologies. The test
was conducted with a Pupil Pro eye tracker revision 021.
The test used Pupil Capture software, version 0.3.8
running on Mac OS. The test routine is part of Pupil
Capture releases, starting with version 0.3.8 and available
to all users.
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Figure 7: Results of accuracy test for one user. Marker target
in green. Gaze point in red. Correspondence error in orange.
Notice sample point with big error - during this sample period,
the subject was not looking at the marker at the beginning of
the test.

Results
Under ideal conditions 0.6 degrees of accuracy and 0.08
degrees of precision are achieved.

Temporal Accuracy, Latency and Precision
A second critical aspect are the temporal characteristics of
the pupil eye tracking system.

Stream Synchronization
Timestamping is crucial for stream synchronization
because data is obtained from two independent free
running video sources. Additionally timestamps are used
for correlation with additional external experiment or
sensor data. Thus we strive to obtain a timestamp that is

closest to the timepoint of data collection (in our case
camera sensor exposure).

Pupil capture has two image timestamp implementations:

When the imaging camera is known to produce valid
hardware timestamps, Pupil Capture uses these hardware
image timestamps. These timestamps have high precision
and accuracy as they are taken at the beginning of sensor
exposure by the camera and transmitted along with the
image data. The hardware timestamp accuracy exceeds
our measurement capabilities. The variation of exposure
times (jitter) reported by the hardware timestamps we
measure by calculating the standard deviation of 1400
successively take frame times. It is 0.0004s for the world
camera and 0.0001s for the eye camera.

Hardware timestamping is implemented in the Linux
version of Pupil Capture and supported by both cameras
of the Pupil Pro headset revision 020 and up. When Pupil
Capture runs on an OS without timestamp video driver
support or does not recognize the attached cameras as
verified hardware timestamp sources, Pupil Capture uses
software timestamps as a fallback. The timestamp is
taken when the driver makes the image frame available to
the software. Software timestamps are by nature of worse
accuracy and precision, as they are taken after exposure,
readout, image transfer, and decompression of the image
on the host side. These steps take an indeterministic
amount of time, which makes it impossible to accurately
estimate time of exposure. Accuracy and precision depend
on the camera and video capture driver.

System Latency
For real-time applications the full latency of Pupil is of
great concern. We obtain processing times of functional
groups in the Pupil hardware and software pipeline by
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Figure 8: System latency diagram shows 1) eye process and 2) scene processes and times between sensor exposure and key points in
the processing pipeline. Gray bars represent video streams of each process with vertical divisions as individual image frames within the
streams. Color bars for key functions annotated with processing times.

calculating the time between sensor exposure and key
points in the workflow. These temporal factors in signal
delay are presented in Figure 8. All measurements were
taken using Pupil Pro headset rev022 connected to a
Lenovo X201 laptop with an Intel Core i7 620M CPU
running Ubuntu 12.04. It should be noted that in
real-time applications synchronicity of data is sacrificed
for recency of data. The eye process pipeline is about 1/3
the latency of the world process pipeline. Therefore, we
choose to broadcast the eye information as soon as it
becomes available instead of waiting for the temporally
closest scene image to become available.

Using the most recent data only makes sense for real-time
applications. No sacrifices are made for any offline
correlation of data employed by calibration, testing, or
playback of recorded data. Furthermore, this approach

does not prevent the user from obtaining accurate
temporal correlation in real-time or offline applications.
With this approach we can characterize the system
latency for the eye pipeline, world pipeline separately:

• Total latency of the eye processing pipeline from
start of sensor exposure to availability of pupil
position: 0.045s (measured across 1400 samples
with a standard deviation of 0.003 s)

• Total latency of the world pipeline including the eye
measurement from start of sensor exposure to
broadcast of pupil, gaze, and reference surface data
via network: 0.124 s (measured across 1200 samples
with a standard deviation of 0.005 s)
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Minimum Hardware Requirements
The Pupil eye tracking system works with a traditional
multipurpose computer - laptop, desktop, or tablet. It is
therefore important to determine the minimum hardware
specifications required to run Pupil Capture software in
real-time. We tested the performance using a 11 inch
Macbook Air (2010 model) with 2 GB of RAM and an
Intel Core2Duo SU9400 dual core CPU. The software
version used was Pupil Capture v0.3.8. The OS used on
the machine specified above was Ubuntu 13.10.

Our performance test demonstrates that the system’s
CPU load never went above 90 percent, using the above
hardware running Pupil Capture in recording mode, pupil
detection at 30 fps and the world camera capture at 24
fps. The hardware setup was selected because it represents
a portable computing platform with limited computing
power. Any computer with a Intel “i” series processor or
equivalent will have sufficient CPU resources, when
comparing CPU benchmarks. Pupil Capture relies on
several libraries to do video decompression/compression,
image analysis, and display with platform specific
implementations and efficiencies. Therefore, our test using
a Linux distribution can not be generalized to Windows or
MacOS. We found that requirements were similar for
MacOS 10.8 and above. We did not establish Windows
hardware requirements at the time of writing.

Conclusion
In order to further advance in eye tracking and to support
the pervasive eye tracking paradigm, we will require
accessible, affordable, and extensible eye tracking tools.
We have developed Pupil as a contribution to the eye
tracking research community. Pupil is already used in a
wide range of disciplines and has developed a community
of researchers and developers. Current limitations to the

system are parallax error and tracking robustness in IR
rich environments. Both Pupil software and hardware are
under active development. Future developments will focus
on hardware and software in parallel. The next big steps
planned for Pupil are to improve mobility, implement
real-time pose tracking and scene mapping, simplify user
experience, and improve pupil tracking.

Links
1. Pupil mobile eye tracking headset:

http://pupil-labs.com/pupil

2. Pupil open source code repository:
http://github.com/pupil-labs/pupil

3. Pupil User Guides:
https://github.com/pupil-labs/pupil/wiki/

4. Pupil user group forum: http://groups.google.

com/forum/#!forum/pupil-discuss

5. Pupil open source headset mount repository
https://code.google.com/p/pupil/source/browse/

?repo=hardware

6. Pupil on arxiv.org http://arxiv.org/abs/1405.0006

References
[1] Babcock, J. S., and Pelz, J. B. Building a

lightweight eyetracking headgear. In Proceedings of
the 2004 symposium on Eye tracking research &
applications, ACM (2004), 109–114.

[2] Bulling, A., and Gellersen, H. Toward Mobile
Eye-Based Human-Computer Interaction. IEEE
Pervasive Computing 9, 4 (2010), 8–12.

[3] Canny, J. A computational approach to edge
detection. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 6 (1986), 679–698.

[4] Ferhat, O., Vilariño, F., and Sánchez, F. J. A cheap
portable eye-tracker solution for common setups.

1159

WORKSHOP: PETMEI

http://pupil-labs.com/pupil
http://github.com/pupil-labs/pupil
https://github.com/pupil-labs/pupil/wiki/
http://groups.google.com/forum/#!forum/pupil-discuss
http://groups.google.com/forum/#!forum/pupil-discuss
https://code.google.com/p/pupil/source/browse/?repo=hardware
https://code.google.com/p/pupil/source/browse/?repo=hardware
http://arxiv.org/abs/1405.0006


Journal of Eye Movement Research 7, 3 (2014),
2:1–10.

[5] Fitzgibbon, A. W., Fisher, R. B., et al. A buyer’s
guide to conic fitting. DAI Research paper (1996).

[6] Global, T. Accuracy and precision test method for
remote eye trackers, 2011.

[7] Hardy, G., Seshu Aiyar, P., and Wilson, B. Collected
papers of srinivasa ramanujan. Cambridge, London
(1927).

[8] Li, D., Babcock, J., and Parkhurst, D. J. openeyes:
a low-cost head-mounted eye-tracking solution. In
Proceedings of the 2006 symposium on Eye tracking
research & applications, ACM (2006), 95–100.

[9] Lukander, K., Jagadeesan, S., Chi, H., and Müller,
K. Omg!: A new robust, wearable and affordable
open source mobile gaze tracker. In Proceedings of
the 15th international conference on
Human-computer interaction with mobile devices and
services, ACM (2013), 408–411.

[10] Mantiuk, R., Kowalik, M., Nowosielski, A., and
Bazyluk, B. Do-it-yourself eye tracker: Low-cost
pupil-based eye tracker for computer graphics
applications. In Advances in Multimedia Modeling.
Springer, 2012, 115–125.

[11] Mardanbegi, D. Haytham gaze tracker: Diy hardware
and open source software, March 2013.

[12] Mulvey, F. Woking copy of definitions and
terminology for eye tracker accuracy and precision,
2010.

[13] Ryan, W. J., Duchowski, A. T., and Birchfield, S. T.
Limbus/pupil switching for wearable eye tracking
under variable lighting conditions. In Proceedings of
the 2008 symposium on Eye tracking research &
applications, ACM (2008), 61–64.

[14] Suzuki, S., et al. Topological structural analysis of
digitized binary images by border following.
Computer Vision, Graphics, and Image Processing
30, 1 (1985), 32–46.
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