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Introduction

Human gaze has long held a particular fascination among researchers and practitioners alike because
of its fundamental importance in human communication and interaction as well as its close links
to human perception and cognition. A large body of work in the psychological and social sciences
as well as in consumer behavior research has shed light on the many different ways in which a
wide range of factors influence or are influenced by gaze behavior. Much of this research has been
conducted n controlled laboratory settings where users sit behind a computer monitor and look at
carefully designed visual stimuli. Real-world consumer behavior has, for a long time, been beyond
the reach of gaze behavior research.

Methods to assess consumers’ attention, their point of gaze, or the movement of their eyes
over time use either sensors placed in the environment (so-called stationary eye-tracking) or
worn on the head (so-called mobile eye-tracking). While early eye trackers were intrusive, cum-
bersome to use, and restricted data collection to short-term recordings in controlled laboratory
settings, two recent developments have started to change this. First, mobile eye trackers can now be
implemented as lightweight embedded systems, and therefore have become suitable for recordings
in mobile daily life settings (Bulling & Gellersen, 2010; Tonsen, Steil, Sugano, & Bulling, 2017)—
facilitating recordings over several hours or days and for large groups of users (Bulling, Weichel,
& Gellersen, 2013; Pieters & Wedel, 2004; Steil & Bulling, 2015). Second, methods for stationary
eye-tracking that only require a single oft-the-shelf camera have recently improved considerably
and now promise accurate eye-tracking capabilities on the millions of handheld devices, displays
deployed in public, and smart applhiances at home that increasingly feature integrated cameras
(Sugano, Zhang, & Bulling, 2016; Wood & Bulling, 2014; Zhang, Sugano, & Bulling, 2017). Taken
together, both advances give rise to a new class of pervasive eye-tracking systems that will enable con-
tinuous, robust, and accurate monitoring of gaze in everyday life.

The ramifications of this imminent paradigm shift are far-reaching in the social, psychological,
business, and computer sciences, as well as for practice. Gaze has a long history as a modality for
explicit human-computer interaction, such as for gaze-based pointing or object selection (Majaranta
& Bulling, 2014), as well as in social signal processing (Adams & Kleck, 2003) and 1n artificial con-
versational agents (Vertegaal, Slagter, van der Veer, & Nijholt, 2001). Gaze also serves as a source
of implicit information about users, including their behavioral context (Bulling, Ward, Gellersen,
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& Troster, 2011; Zhang, Wedel, & Pieters, 2009), intents and goals (Bednarik, Vrzakova, & Hradis,
2012; Pieters & Wedel, 2007), cognitive processes and states (Bulling & Roggen, 2011; Bulling &
Zander, 2014), and even personality traits (Hoppe, Loetscher, Morey, & Bulling, 2015). With eye-
tracking now moving into everyday life, gaze will also become a rich source of information on
the “inner workings” of consumers—information that 1s difficult if not impossible to obtain from
other modalities available today (see Chapters 1, 3-5).This information will become readily avail-
able at large scales in real-world environments, for example, while consumers are making purchases
in brick-and-mortar and online stores, providing unprecedented insights into consumers’ prefer-
ence formation and decision-making processes (Stiittgen, Boatwright, & Monroe, 2012). As such,
pervasive eye-tracking, defined as the collection and utilization of ¢aze data in real-world settings in which
consumers go about their everyday tasks, has the potential to become a core technology to passively
monitor, analyze, and actively manage consumer attention. Pervasive eye-tracking also has signifi-
cant potential to facilitate, support, and enhance consumers’ interactions, such as with interactive
billboards or smart shelves. Figure 2.2 illustrates the spectrum of pervasive eye-tracking applications
from offline to real-time.

Eye-Tracking

One of the first eye-tracking devices was developed by Huey (1898). The device consisted of a
lever that was attached to a cup that was placed on the eye and that had a hole for the respondent
to see through. Moving the eyes caused a pen attached to the cup to move across the surface of
a drum, which recorded the eye movement. This device had obvious mechanical limitations. To
alleviate these, Orschansky (1899) attached a mirror to the eye cup, and recorded the reflection
of light on the mirror. It soon became clear that 1t was even better to record light reflected by the
surface of the eye itself. Dodge first used this principle when developing his “falling plate” camera
(Dodge, 1900). His eye tracker consisted of a photographic plate that was lowered gradually to
record the reflection of sunlight oft a white piece of cardboard placed in front of the eye. This
device produced the first published trace of eye movements (Wade, 2010).

Today, eye trackers typically measure eye movements in one of three ways (see also Chapter 4;
Duchowski, 2007): a) video-based infrared pupil-corneal reflection (PCR), b) measurement
of the cornea-retinal standing potential between the front and the back of the human eye
(Electrooculography, EOG), and ¢) video-based eye-tracking using head-mounted or stationary vis-
ible light video cameras (video-oculography). We call the latter systems pervasive eye-tracking systems.
They can be further categorized depending on whether they use eye landmarks, such as pupil
centers and eye corners, or directly estimate gaze direction from the eye 1mage using machine
learning techniques (Hansen & J1, 2010).Video-based eye trackers can be either used 1n a stationary
or mobile configuration. A typical setup consists of a video camera that records the movements
of the eye(s) and a computer and software that processes, saves, and analyzes the gaze data. In sta-
tionary systems, this eye camera 1s often placed below the screen while in mobile systems the camera
1s mounted on a glasses-like frame. Mobile eye trackers additionally include an egocentric scene
camera to map the user’s gaze direction to the visual scene and thus facilitate subsequent analysis.

PCR-Based Eye-Tracking

Most commercial stationary eye trackers are PCR-based, and have gained popularity because they
typically have high spatial and temporal precision. PCR-based eye trackers emit infrared light and
use cameras to detect the reflection of the light on the cornea, the outer layer of the eye. Most
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devices are binocular, 1.e., they detect the reflection on both eyes. The point of focus of the eyes is
estimated from the relative distance between the corneal reflection(s) and the pupil center, which
has to be determined through a calibration task prior to first use. Because the distance between
the pupil and the corneal reflection does not change much during head movements, modern
stationary eye trackers allow small head movements. PCR-based eye trackers record the x- and y-
coordinates of the point of gaze with sampling rates of up to 2 kHz and a spatial resolution of 0.5°.

Stationary eye-tracking confines users’ body and head movement to a rather small virtual
tracking box about half a meter away from the tracker. This requirement has, for a long time,
restricted gaze recordings to controlled laboratory settings and carefully selected stimuli that were
presented to participants on a computer screen for predefined durations. This approach has been
increasingly criticized because principles guiding the eyes when looking at computer screens can
be very different from those when engaging in everyday behavior (Foulsham, Walker, & Kingstone,
2011). Findings obtained in controlled settings may thus have limited validity for natural envir-
onments (Kingstone, Smilek, & Eastwood, 2008). Compelling evidence for these differences was
provided in a study which compared eye movements of participants while exploring different
real-world environments and watching videos of these environments (Marius’t Hart et al., 2009).
The distribution of eye movements obtained in the laboratory predicted the gaze distribution in
the real world with around 60% accuracy—indicating significant differences in eye movements
between laboratory and real-world situations. Mobile eye trackers (see Figure 2.1) address these
challenges by allowing collection of gaze data in everyday settings and during unconstrained head
and body movements, including daily activities such as making tea or sandwiches, driving, walking,
playing sports, and shopping (Hayhoe & Ballard, 2005).

Mobile PCR-based eye trackers consist of lightweight glasses, in which miniature infrared (IR)
cameras pointing at one or both eyes, as well as a scene camera, are built in. The IR cameras record
the Purkinje reflections off the cornea as in stationary PCR-based eye trackers, while the scene

FIGURE 2.1 (left) PUPIL from Pupil Labs is an accessible, affordable, and extensible open source plat-
form for mobile eye-tracking, gaze-based interaction, and egocentric vision research. (right) MEME
from JINS 1s an integrated eyewear computer for measuring eye movements using Electrooculography
(EOG) and head movements using integrated inertial sensors.
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camera additionally records the participant’s field of view. Because the eye camera 1s mounted on
the head and moves with it, the position of the IR source relative to the eye is nearly fixed. This
allows participants to move around freely, 1.e., without any constraints on head or body movements.
The output of the eye tracker 1s a video of the participant’s field of view with the 2D gaze point
overlaid in real-time in the form of a cursor or cross-hair. The two most important applications
of mobile eye-tracking, so far, are in the analysis of visual attention and behavior in human vision

research, and for gaze-based human-computer interaction in computer science.

Video-Based Eye-Tracking Using Visible Light Cameras

While PCR-based eye trackers can provide high tracking accuracy, they do require special-purpose
equipment (IR light sources and special cameras) that 1s not commonly available. This require-
ment triggered research into methods that only require off-the-shelf cameras in combination with
computer vision algorithms. These video-based methods can generally be categorized as model-
based or learning-based (Hansen & Ji, 2010). Model-based methods use a geometric model of the
human eye as a basis for estimating the direction of gaze. The contour of the pupil and iris, which
1s a circle in three dimensions, takes the form of an ellipse when projected on a 2D 1mage plane.
An ellipse fitted algorithmically to the pupil and/or iris can, in turn, be used to reconstruct the
original sphere in three dimensions, which allows the orientation of the eyeball to be calculated
and the gaze direction to be predicted (Chen & Ji, 2008;Valenti, Sebe, & Gevers, 2012). Although
model-based video-oculography methods have recently been applied in more practical scenarios
(Cristina & Camilleri, 2016; Funes Mora & Odobez, 2014; Wood & Bulling, 2014), their gaze esti-
mation accuracy is still low, since they depend on accurate eye feature detection for which high-
resolution images and homogeneous bright illumination are required. This has largely prevented
these methods from being widely used in real-world settings or on commodity devices.

[n contrast, learning-based gaze estimation methods do not rely on explicit detection of eye
features but directly map the pixel information contained in images obtained from the user to 3D
gaze directions using machine learning algorithms. Because they do not rely on explicit eye feature
detection, learning-based methods can handle low-resolution images and longer distances from the
object of gaze. While early methods assumed a fixed head pose, more recent methods allow for free
3D head movement in front of the camera (Gao, Harari, Tenenbaum, & Ullman, 2014). An open
research challenge in learning-based gaze estimation is to train gaze estimators that make minimal
assumptions regarding the user, environment, or camera.

The need to collect person-specific training data represents a fundamental limitation for both
model-based and learning-based gaze estimation methods.To reduce the burden on the user, several
previous works used events that can be observed when the user interacts with computing systems,
such as mouse clicks or key presses, as a proxy for users’ on-screen gaze position. Alternatively,
visual saliency maps (Sugano & Bulling, 2015) or pre-recorded human gaze patterns on defined
visual stimuli (Alnajar, Gevers,Valenti, & Ghebreab, 2013) can be used as training data to learn the
gaze estimation function. However, the need to acquire user input fundamentally limits the extent
to which these approaches can be applied to interactive settings. Thus, another line of work aims to
train gaze estimators that generalize to arbitrary users without requiring explicit user input (Funes
Mora & Odobez, 2013).

Despite significant advances in such person-independent gaze estimation, all of these previous
works only considered gaze estimation tasks in which training and test data are assumed to come
from the same respondents. Zhang, Sugano, Fritz, and Bulling (2015,2017,2019) were first to study
the practically most relevant but also significantly more challenging task of unconstrained gaze
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estimation via cross-dataset evaluation. They introduced a method based on a multimodal deep con-
volutional neural network that outperformed the state-of-the-art methods by a large margin. These
latest methods were also shown to have significant potential for other tasks, such as estimation of
audience attention (Sugano et al., 2016) or detection of eye contact in everyday settings (Zhang,
Sugano, & Bulling, 2017). Later works demonstrated that large-scale methods for unconstrained gaze
estimation can benefit from advances in computer graphics techniques for eye region modelling.
These models can be used to synthesize large amounts of highly realistic and perfectly annotated
eye region images, thereby significantly reducing both data collection and annotation efforts (Wood
et al., 2015). The latest model 1s fully morphable and can synthesize more than 40 eye images per
second on commodity hardware (Wood, Baltrusaitis, Morency, Robinson, & Bulling, 2016).

The cameras used for video-based eye-tracking typically capture video images at a frame rate of
between 30 and 120 Hz. Therefore, pervasive eye trackers currently provide lower spatio-temporal
precision than PCR-based systems, and face additional challenges with respect to accurate detec-
tion of fast eye movements, so-called saccades (Rayner, 1998). Studies employing pervasive eye-
tracking therefore mostly report dwell times on manually defined areas of interest. Burton, Albert,
and Flynn (2014) compared video-based with PCR-based eye-tracking and found that the former
1s less accurate especially for smaller regions of interest (around 1% of the screen or less), even more
when they are located in the periphery of the computer screen. Video-based eye-tracking may
underestimate dwell time by as much as 50% for these smaller areas of interest. For larger areas of
interest that comprise of 5% of the screen or more, dwell times may be underestimated by about
25%. Video-based technology, however, may realize accuracies comparable to IR eye-tracking
when interest focuses on hit rates, that 1s, percentages of participants who fixated at least once on a
larger area of interest. The advantages of video-based eye-tracking are the very low cost, the possi-
bility of eye-tracking in natural settings (at home, at work, or any other location where respondents
are 1n front of a desktop or laptop computer), and across dispersed geographic locations. The lower
spatial and temporal precision may partially be oftset by using much larger samples of participants.

Information That Pervasive Eye-Tracking Systems Provide

As mentioned before, eye-tracking provides a plethora of information about the user and has,
consequently, been used for a long time as both a measurement technique and mmput modality.
Arguably, the two most important applications of eye-tracking, so far, are in the analysis of visual
attention and behavior in human vision research, and for gaze-based human-computer interaction
in computer science (see Figure 2.2).

Analysis of visual attention in human vision research has traditionally focused on analyzing the
deployment of gaze to different areas of interest (AOIs) on a defined stimulus, e.g., a natural image,
visual pattern, or website, displayed to the user on a computer monitor (see Chapters 4-5). The
AOQOIs can be either content-based (face, text, image, object, etc.) or space-based (grid, image pixels).
The analysis either involves statistically testing for differences in eye movement characteristics,
or aggregating and visualizing fixations 1n fixation density maps (see Figure 2.3) or other graph-
ical displays (Holmgqvist et al., 2011). All of these analyses are readily provided by commercial
software shipped together with the eye trackers or free software downloadable from the web.
[t the analysis 18 done for a large number of users, robust measures of potential differences in
visual attention towards a given stimulus for two or more user groups can be obtained. The eye
movement characteristics commonly used for statistical analysis are the average fixation duration,
the total gaze duration, time until the first fixation, or the total number of fixations on a set of
given AOIs (Holmgvist et al., 2011). See Pieters and Wedel (2004) for an example of this approach.
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FIGURE 2.2 Spectrum of possible eye-tracking applications and use of gaze information in consumer
behavior analysis and decision making (inspired by Majaranta & Bulling, 2014; Author generated).

Statistical testing provides a principled and well-established way of identifying differences
in attentive behavior between AOIs. One drawback of this approach, however, is that temporal
information is not considered. Scan-path analysis was devised to address this limitation and thus
provides a complementary form of attention analysis (Noton & Stark, 1971; Pieters, Rosbergen,
& Wedel, 1999). Scan-paths are sequences of multiple fixations on a stimulus for a given amount
of time, typically no more than a few seconds. To calculate scan-paths, fixation sequences are first
encoded, averaged per user if desired, and then programmatically or statistically compared to the
scan-paths of other users or experimental conditions. An application to decision-making tasks, for
example, was provided by Day (2010). The programmatic comparison involves calculating how
similar different scan-paths are, for example using normalized scan-path similarity (Le Meur &
Baccino, 2013). In addition to retaining temporal information of fixation sequences, scan-paths
can also be visualized easily by overlaying the fixations and their connections with lines onto the
stimulus (see Figure 2.3). The key drawbacks of this type of scan-path analysis are that visualiza-
tion does not scale well to a large number of scan-paths and users and scan-path visualizations
become cluttered very quickly. An alternative approach is a statistical approach to scan-path ana-
lysis, which may involve either Markov (Pieters, Rosbergen, & Wedel, 1999), or Hidden Markov
Models (Liechty, Pieters, & Wedel, 2003) to describe first-order transitions between AOIs. Finally,
if neither difference between individual eye movement characteristics nor temporal information
of fixation sequences are desired, fixation density maps provide yet another means to summarize
the eye movement data (Holmgqvist et al., 2011). Further, statistical models that predict probabality
distributions of fixations from low-level image characteristics can be used to estimate saliency

maps that display regions in the stimulus that are salient to each viewer (van der Lans, Pieters, &
Wedel, 2008).

Gaze-Based Interaction

In human-computer interaction, gaze has a long history as a means for hands-free interaction
with computing systems (Majaranta & Bulling, 2014; Sibert & Jacob, 2000). Gaze has, for example,
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FIGURE 2.3 Eye movements of multiple participants on advertisement for Traveler (reprinted with per-
mission of MIT Press; Fawcett, Jonathan M., Evan E Risko, and Alan Kingstone, (eds.) The Handbook
of Attention, Figure 25.1, p. 571, © 2015 Massachusetts Institute of Technology, published by the MIT
Press.).

been used for fast, accurate, and natural interaction with ambient and body-worn devices and
displays (Esteves,Velloso, Bulling, & Gellersen, 2015; Huang, Li, Ngai, & Leong, 2017;Vaitukaitis &
Bulling, 2012; Wood & Bulling, 2014) for a variety of tasks including, but not limited to, pointing
(Zhai, Morimoto, & Thde, 1999), object selection and transfer (Sibert & Jacob, 2000; Stellmach &
Dachselt, 2012; Turner, Alexander, Bulling, Schmidt, & Gellersen, 2013;Vidal, Bulling, & Gellersen,
2013; Zhang, Bulling, & Gellersen, 2013; Zhang, Miiller, Chong, Bulling, & Gellersen, 2014), or
text entry (Majaranta & Riihi, 2002). Prior work also investigated means to combine gaze input
with other modalities, such as touch (Simeone, Bulling, Alexander, & Gellersen, 2016; Stellmach &
Dachselt, 2012; Turner, Alexander, Bulling, & Gellersen, 2015), mouse and keyboard input (Kumar,
Paepcke, & Winograd, 2007) or mid-air gestures (Velloso, Turner, Alexander, Bulling, & Gellersen,
2015). Due to the aforementioned prior limitations of eye-tracking, much of this work was done
in desktop settings or, in general, settings in which users moved relatively little in front of the dis-
play. Complementing these active uses of gaze for interaction is a relatively large body of work
on attentive user interfaces (Bulling, 2016; Vertegaal, 2003; Xu, Sugano, & Bulling, 2016), 1i.e.,
interfaces that monitor user attention passively and adapt to users’ current attentional capacity and
state in different ways. These attentive user interfaces are increasingly explored in everyday settings,
in particular on public displays (Alt, Bulling, Mecke, & Buschek, 2016; Khamis, Alt, & Bulling,
2016; Khamis, Bulling, & Alt, 2015; Sugano et al., 2016; Walter, Bulling, Lindlbauer, Schiissler, &
Miiller, 2015).

The key underlying measure of the vast majority of all of these works is the 2D point of gaze on
the display itself or, in cases in which 3D information can be related to specific objects of interests,
3D gaze direction measured using both mobile and remote eye trackers. More recently, a new line
of work has started to explore machine learning approaches on top of the “raw” gaze data, 1.e.,
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methods to encode gaze into rich higher-level representations that can subsequently be linked to
user behavior and, thus, be used for implicit human-computer interaction (Majaranta & Bulling,
2014). A growing body of work has demonstrated that, tfor example, spatio-temporal information
on gaze can be used to automatically predict users’ everyday activities (Bulling, Ward, & Gellersen,
2012; Bulling et al., 2011; Kunze, Bulling, Utsumi, Yuki, & Kise, 2013), also in an unsupervised
fashion during full-day mobile gaze recordings (Bulling et al., 2013; Steil & Bulling, 2015), cogni-
tive processes and states (Bulling & Roggen, 2011; Bulling & Zander, 2014;Tessendorf et al., 2011),
intentions and goals (Bednarik et al., 2012), social interactions (Pfeiffer,Vogeley, & Schilbach, 2013),
or even aspects of users’ personality and decision-making processes (Hoppe et al., 2015).

All of these analyses rely on the 2D point of gaze on a stimulus or the 31D gaze direction as
input. In addition, eye trackers may also provide other information about the user. For example,
the videos of the users’ faces that video-based eye trackers obtain can serve as input to emotion
recognition (Cohen, Sebe, Garg, Chen, & Huang, 2003). Although not directly eye-tracking, this 1s
a rich source of auxiliary data that may provide important information on users’ underlying emo-
tional states (see Chapter 23).

[n addition, eye trackers also provide measurements of the pupil diameter (see Chapter 3), which
may depend on the cognitive load and/or arousal of the respondent. The pupil tends to dilate
when users are aroused or deploy more cognitive resources to process the information (Bradley,
Miccoli, Escrig, & Lang, 2008). Pupil size also depends on other factors, however, including light-
ning conditions, because of which pupil diameter is not an unambiguous indicator of cognitive
load or arousal (Loewenfeld, 1993).

Further, an 1mage of the scene that the person 1s looking at can be reflected on the cornea and
may thus be obtained from the corneal image recorded using mobile eye trackers (Nakazawa &
Nitschke, 2012). The cornea reflects not only the incoming light, but also the entire surrounding
scene over a wide field of view. The corneal reflection itself allows for the analysis of the entire
field of view. It enables the reconstruction and analysis of the scene and the 3D environment of the
viewer (Nishino & Nayar, 2006), and eliminates the need for a separate camera to capture the users’
field of view, thus further enabling miniaturization of pervasive eye-tracking.

Other measures that are obtained as a corollary of eye-tracking are micro-saccades, blinks and
vergence movements. First, micro-saccades are very small, involuntary movements of the eyes (less
than 1° of visual angle) that have been shown to be associated with attentional load, onset of new or
oddball visual stimuli, and the preparation of motor response (Engbert, 2006; Pastukhov & Braun,
2010; Rolfs, Kliegl, & Engbert, 2008). Despite their potential, as of yet, micro-saccades are difficult
to record 1in everyday settings and require highly accurate and high-speed PCR -based eye trackers.
Second, eye blinks are recorded as an interruption of the corneal reflection in PCR-based eye
trackers and can be detected with video-based trackers (Grauman, Betke, Gips, & Bradski, 2001).
An increase 1in blink rate, 1.e., the number of blinks for a particular time duration, 1s associated
with higher levels of arousal (Bradley, Codispoti, Cuthbert, & Lang, 2001), while a decrease can
be observed during attentional focus, high cognitive load (Stern, Walrath, & Goldstein, 1984),
or increased drowsiness (Cather, Erdmann, & Ullsperger, 2003). Third, vergence eye movements
are movements where both eyes turn inward or outward, in order to keep an object that moves
towards or from us in focus. Vergence eye movements can thus be used to determine the distance
of a visually attended object (Choi, Jung, Ban, Nutsuma, & Lee, 2006) or, if controlled voluntarily,
as a means for user input (Kirst & Bulling, 2016).

All of the auxiliary measures discussed earlier provide additional information on users’ under-
lying cognitive states and can be used together with users’ gaze to model underlying cognitive
states and/or traits. It may additionally enable the optimization of visual design and user interfaces,
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filling the void in areas such as optimization of sponsored search, movie and video clips, banner
ads, product reviews, text and 1mage search, and product comparison layouts (Pieters, Wedel, &
Zhang, 2007). Bayesian models can be used to represent cognition from first principles and make
predictions on how multiple unobserved attentional processes may have aftected the recorded
eye movements. This enables inferences on multiple underlying cognitive processes from eye
movement data, and has been shown to result in accurate forecasts of downstream behavior such
as memory (Wedel & Pieters, 2000), search (van der Lans et al., 2008), consideration (Chandon,
Hutchinson, Bradlow, & Young, 2009), choice (Stiittgen et al., 2012), and even sales (Zhang et al.,
2009) from eye movements.

Pervasive Eye-Tracking Applications in Consumer Behavior Analysis

Most recent mobile eye trackers that rely on video cameras can be implemented as lightweight
and fully embedded mobile systems and therefore have become suitable for recordings in everyday
settings (see Figure 2.1 for an example). Such systems now also allow, for the first time, to record
gaze over long periods of time, e.g., over a full day of a person’s life (Bulling et al., 2013; Steil
& Bulling, 2015). The low cost of this new generation of eye-tracking systems, easy calibration,
and unobtrusive measurement in natural exposure conditions are beginning to contribute to the
growth of applications 1n practice, and theory development and testing in academic research.

Consequently, several recent works have started to explore the use of mobile eye-tracking to
analyze consumer behavior in these and other natural everyday settings.

Classic work using PCR-based mobile eye-tracking (Land & Hayhoe, 2001; Land, Mennie,
& Rusted, 1999; Smeets, Hayhoe, & Ballard, 1996) showed that routine goal-directed activities
require continuous monitoring with the eyes and have revealed a tight linkage between eye
movements and the motor actions that are performed. Eye movements during these tasks are
thus mostly directed top-down towards task-relevant objects. The pioneering work of Yarbus had
already shown this early on for static contexts (Yarbus, 1967). The eyes usually reach an object
before any hand action towards the object, and move on to the next object before the preceding
action 1s completed. A shift of the eyes is often followed by a movement of the head, which 1s
followed by the movement of the hand. Thus, research with mobile eye trackers has shown that
eye movements are a fundamental component of the motor pattern and are leading indicators of
goal-directed motion.

Using mobile eye-tracking, research has mvestigated human performance in real-world tasks
such as driving (Shinoda, Havhoe, & Shrivastava, 2001), making tea (Land, Mennie, & Rusted,
1999), walking (Jovancevic-Misic & Hayhoe, 2009), and playing sports (Vickers, 2006, Vickers &
Adolphe, 1997). As for consumer decision making, mobile eye trackers have been used to assess
the effectiveness of in-store merchandising (Hendrickson & Ailawadi, 2014). Research with several
hundreds of shoppers in multiple stores demonstrated that shoppers 1) look in a narrow window
below and above eye level and as a consequence especially signage placed on the ceiling in stores
1s hardly noticed; 2) look at signage for about a second on average and process 3—5 words; 3) look
at signage only when 1t 1s immediately relevant for and in close proximity to the shopping goal;
and 4) process information on signage in the store in a left—right or top—bottom direction. Other
research, using content analysis of data produced by mobile eye trackers (Harwood & Jones, 2014),
has confirmed that 75-85% of fixations that shoppers make in a store fall on products, while
signage receives a much lower number of fixations (0.5%).This research also revealed that the (ver-
tical) line of sight and visual salience (brightness and color contrast) are two main factors affecting
store navigation. A study on digital out-of-home advertising in public transport revealed that over
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60% of participants looked at the digital screens placed in a tram during a 30-minute tram ride,
fixating on 1t 16% of the time the screen was 1n their field of view (Holler, Schrammel, Tscheligi, &
Paletta, 2009). While they are merely scratching the surface of applications of mobile eye-tracking,
these studies illustrate how research in retail and out-of-home settings benefits from mobile per-
vasive eye-tracking and yields insights that would be difficult to obtain otherwise. Another area of
research that can benefit from the application of mobile eye-tracking is research into multitasking
and multi-screen behaviors. One study has shown that viewers preferentially attend to computer
screens as compared to TV screens during media multitasking, which i1s manifested in longer gaze
on the computer screen (Brasel & Gips, 2011). But, gaze times on both screens are limited to a
few seconds only, and people switch between screens around four times per minute. Again, these
insights would be very difficult to obtain without the use of pervasive eye-tracking.

Ever since the work of Yarbus (1967) it 1s evident that eye movements are dependent on the
tasks and goals of consumers. It 1s increasingly recognized that decision making i1s embedded in
perception-action cycles, and that attention plays an active role in constructing decisions (Orquin
& Loose, 2013). However, most often decision making has been studied in 1solation from the
perception-action cycle in which it naturally occurs. A major step forward was made when recent
research 1nvestigated eye movements during decision making (e.g., Glaholt & Reingold, 2011;
Krajbich, Armel, & Rangel, 2010; Pieters & Warlop, 1999; Shi, Wedel, & Pieters, 2013; Shimojo,
Simion, Shimojo, & Scheier, 2003), because 1t revealed the role of attention 1n decision making.
This stream of research was 1nitiated by the work of Russo and colleagues (Russo & Leclerc, 1994;
Russo & Rosen, 1975) who demonstrated not only that eye movements were used to acquire
information, but also how that information was used. This has been recently formalized in statis-
tical models that describe eye movements and decisions jointly (Stiittgen et al., 2012;Yang, Toubia,
& de Jong, 2015). However, in that research eye movements are still collected in a lab setting rather
than a real-life decision context. Pervasive eye-tracking systems will be needed to study decision
making embedded in the perception-action cycle in natural contexts. A first attempt was made by
Gidlot, Wallin, Dewhurst, and Holmgvist (2013), who extended the work by Russo and Leclerc
(1994) to real-world settings, and revealed a deeper processing of the decision alternatives in the

evaluation stage, as compared to lab settings.

Emerging Applications

In a few years from now, eye-tracking will likely be an integrated part of our lives, via camera-
based gaze estimation incorporated in laptops and desktop computers, billboards, kiosks, smart-
TVs, tablets, smartphones, and so on. The incorporation of gaze recording in everyday digital
devices will help make our daily lives simpler, safer, more efficient, and more enjoyable. It may
also enable the optimization of visual design and user interfaces, filling the void in areas such as
optimization of sponsored search, movie and video clips, banner ads, product reviews, text and
image search, and product comparison layouts (Pieters et al., 2007). The rapid development of
recording technology has already begun to see innovative application and 1s likely to create many
more opportunities (see Figure 2.2). For example, eye-tracking systems that record what users look
at on their digital screens may provide hands-free access to information via gaze control, thereby
facilitating interaction with electronic devices. Today, users can already deploy their gaze to activate
apps, scroll through web pages, and make a selection among options by fixating on one of them,
thus improving their user experience. In combination with automated image analysis, pervasive
eye-tracking may allow for automatic alerts if important information 1s overlooked, and may use
visual cues to support or even interactively direct visual search (Sattar, Miiller, Fritz, & Bulling,
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2015;Wedel,Yan, Siegel, & L1, 2016). As more gaze data are collected and being used for marketing
purposes, privacy and security become critical issues. Privacy laws have not kept pace with data
collection and processing technologies. Several governments have been enacting stricter privacy
laws. But, because their gaze, emotion, and other process tracing data 1s considered sensitive by
Most consumers, respecting customers’ privacy is good business practice.

In reading, selective blurring of text may improve reading speed and focus. Explanations
may pop-up when eye movements indicate comprehension 1s slow. Much of this was already
implemented inText 2.0, which 1s a framework for developing web-based eye-tracking applications
to facilitate interactive reading (Biedert, Buscher, Schwarz, Hees, & Dengel, 2010). Also, words and
sentences that a viewer looks at longer may be included in document summaries, which can be
optimized to reflect a reader’s personal interests and used to develop recommendation systems that
recommend new articles, texts, or reviews.

Pervasive eye-tracking will also render computer games more immersive. Waterloo Labs allows
players the use of eye movements to control EyeMario (http://waterloolabs.blogspot.com/), and
Formula Face (http://games.redbull.com/int/en/game/formula-face) allows gamers to use blinks,
smiles, and head movements to control their game. As a player moves her head, expresses emotions,
or blinks, the head and face of the avatar moves synchronously by mirroring these movements and
emotions. Thus, eye, head, and facial movements are recorded and analyzed in real time to render
the avatar’s movements and expressions more realistic and more in tune with the user’s moment-
to-moment feelings, producing games that are more immersive and appealing. Optitrack’s (www.
naturalpoint.com/optitrack/) face capture system already accomplishes much of that.

While eye-tracking has traditionally been used to measure people’s visual attention, 1t 1s increas-
ingly becoming clear that when used along with additional measures that can be extracted from the
facial images, including pupil dilation (see Chapter 3), blinks, micro-saccades, emotion expressions,
scene reflection, head movements, and body movements, a much richer picture of the behavioral
and cognitive state of the viewer can be obtained, including attention, location and environment,
emotions, goals and intentions, activities, and social interactions. Inferring such states presents
opportunities of improving visual user interfaces in a large variety of everyday contexts (Bulling,
2016; Bulling & Zander, 2014).

New virtual and augmented reality applications may also benefit greatly from routine eye
movement recording. Increasingly, companies are exploiting these technologies. Augmented reality
applications allow consumers to see information that is important to them, but not present in the
real-world context, by overlaying digital information on top of real-world settings. Virtual reality
(VR) and augmented reality (AR) allow consumers to use their digital device to try on new
clothes, explore a home, hotel or museum, visit or fly over new cities and countries, or test drive a
car.VR and AR are already used in an increasing number of applications in advertising and selling,.
For example, for virtual test driving of cars, the car manutacturer Volvo has developed smart-
phone applications (www.volvocars.com/intl). There are also an increasing number of applications
in hospitality and travel, through which prospective customers can virtually explore hotels and
hotel rooms, museums, entertainment options, and tourist destinations via 360-degree views on
their smartphones. The hotel chain Mariott has developed in-room VR travel applications (http://
marriott-hotels.marriott.com/). Gaming i1s on the forefront of virtual and augmented reality
applications, with Pokemon Go as a prime example (www.pokemongo.com/), but with current
developments going already beyond that. The Chinese retailer Yihaodian has developed mobile
phone applications that enable its customers to browse and shop in virtual stores at any loca-
tion using their smartphones (https://en.wikipedia.org/wiki/Yihaodian). Eye-tracking has already
been integrated with VR technology (Pfeifter, 2008), where it enables rendering of the virtual
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context based on the real-time tield of view and depth of field blur. It uses the viewer’s gaze to
analyze what he looks at inside the virtual space with the purposes of making the aim of actions
more accurate, making the virtual environment more immersive, and the interactions with actors
in 1t more life-like (Hillaire, Lécuyer, Cozot, & Casiez, 2008).

Open Challenges

Mobile eye trackers are ideal for tracking eye movements during everyday activities in natural
settings, where head, hand, and body movements need to be unconstrained. One challenge with
the application of mobile eye trackers for research purposes is the analysis of data from multiple
participants, because each participant has an 1idiosyncratic field of view at each point in time during
the recording. The data resulting from pervasive eye-tracking essentially consists of movie clips
of the visual field of the user, on which the gaze point is indicated. The degree of heterogeneity
of the data can be extensive, each respondent having his/her own field of view at each point in
time during the study. Computer vision methods are needed to process the individual data streams
and aggregate them to enable the application of statistical methods that facilitate generalizable
conclusions. Progress has been made in oft-the-shelf software to identify and track AOIs across
multiple videos, which makes quantitative analyses feasible especially when researchers have well-
defined ideas about the objects and regions that are of interest in the analysis.

Another challenge 1s that mapping gaze to the 3D environment requires visual markers that
have to be placed and detected in real time in the environment. Alternatively, sophisticated com-
puter vision algorithms are required to detect and track objects such as displays or, in general, areas
of interest in the egocentric video (Lander, Gehring, Kriiger, Boring, & Bulling, 2015). Further,
fully invisible integration of the eye tracker into ordinary glasses 1s not yet feasible due to the rather
large 1maging sensors currently used. The design of current mobile eye trackers can lead to low
social acceptance and was shown to result in unnatural behavior of both the wearers and people
they interact with (Nasiopoulos, Risko, Foulsham, & Kingstone, 2015).

Conclusion

Over the past decade, eye movement research has increasingly relied on the integration of techniques
and theories from visual computing, attention research, and in-lab eye-tracking—fields that have
been relatively disparate before. Visual computing has developed powerful tools that enable the
extraction of basic visual features from images, segment and describe 1mages, and recognize forms,
shapes, faces, and large numbers of object classes. Attention research offers theories that explain eye
movements from underlying cognitive processes while laboratory eye-tracking experiments offer
methods of recording, analyzing, and interpreting eye, face, and head movements. Combined, these
fields have provided unprecedented insights into people’s processing of, evaluation of, and behavior
towards controlled visual stimuli.

Recent advances in mobile eye-tracking as well as stationary eye-tracking using video cameras
readily integrated into handheld devices and ambient displays pave the way for a new generation
of pervasive eye-tracking systems that allow researchers and practitioners to understand and ana-
lyze gaze information in real-world settings. As such, pervasive eye-tracking has not only significant
potential to validate and complement existing theories and findings in the previous research areas
but also to uncover entirely new behavioral, cognitive, and attention phenomena and enable new
applications impossible before. The ramifications of this imminent paradigm shift are transforma-
tive, in particular for applications in consumer behavior analysis and decision making in offline,
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online, mobile, and VR settings. With pervasive eye-tracking and analysis of gaze behavior and
facial expressions becoming a commodity, gaze will provide a unique source of information on the
“inner workings” of consumers. Moreover, these measures will increasingly provide input that will

be used to shape our digital environment.
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