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Abstract
Non-verbal behavioural cues are fundamental to human
communication and interaction. Despite significant
advances in recent years, state-of-the-art human-machine
systems still fall short in sensing, analysing, and fully
“understanding” cues naturally expressed in everyday
settings. Two of the most important non-verbal cues, as
evidenced by a large body of work in experimental
psychology and behavioural sciences, are visual (gaze)
behaviour and body language. We envision a new class of
collaborative human-machine systems that fully exploit
the information content available in non-verbal human
behaviour in everyday settings through joint analysis of
human gaze and physical behaviour.

ACM Classification Keywords
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Introduction
Human interactions are complex, adaptive to the situation
at hand, and rely to a large extend on non-verbal
behavioural cues. However, state-of-the-art
human-machine systems still fall short in fully exploiting
such cues. Despite significant advances in recent years,
current human-machine systems typically use cues and
sensing modalities in isolation, only cover a limited and
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coarse set of human behaviours, and methods to perceive
and learn from behavioural cues are mainly developed and
evaluated in controlled settings.

We envision a new class of human-machine systems that
fully exploit the information content available in natural
non-verbal human behaviour in everyday settings through
joint analysis of multiple behavioural cues. Multimodal
analysis of non-verbal cues has significant potential and
will pave the way for a new class of symbiotic
human-machine systems that offer human-like perceptual
and interactive capabilities. Human gaze and body
language are particularly compelling cues given that a
large body of work in the behavioural sciences has shown
that these cues are rich sources of information and
therefore most promising for realising our vision.

This vision poses three key research challenges. The first
challenge is human behaviour sensing, i.e. the
development of computational methods to unobtrusively,
robustly, and accurately estimate gaze and body
movement in daily-life settings. The second challenges is
computational human behaviour analysis, i.e. the
development of machine learning methods to analyse,
understand, and learn from visual and physical
behavioural cues and that cope with the significant
variability and subtleness of human non-verbal behaviour.
The third challenge is how to exploit and apply
information on non-verbal cues in symbiotic
human-machine vision systems. In the following we will
provide an overview of our previous and ongoing efforts to
address these challenges.

Human Behaviour Sensing

Figure 1: Sample images from
our MPIIGaze dataset showing
the considerable variability in
terms of place and time of
recording, directional light and
shadows.

Our efforts to advance the state of the art in human
behaviour sensing have so far mainly focused on visual

behaviour, i.e. mobile and remote gaze estimation. These
efforts have been driven by the vision of pervasive gaze
estimation, i.e. unobtrusive and continuous gaze
estimation in unconstrained daily-life settings [1]. More
specifically, we have developed new mobile eye trackers
based on Electrooculography and computer vision [3, 10].
These systems have significantly pushed the boundaries of
mobile gaze estimation with respect to wearability and
recording duration as well as accessibility, affordability,
and extensibility. We have also presented methods for eye
tracker self-calibration and for adapting calibrations to
new users [8, 16]. We have also developed computer
vision methods for remote gaze estimation using
monocular RGB cameras to open up new usage scenarios
and problem settings for gaze interaction. More
specifically, we have developed methods for
calibration-free gaze estimation on single and across
multiple ambient displays [25, 26, 11] as well as for gaze
estimation using the cameras readily integrated into
handheld portable devices, such as tablets [23].

More recently, we have started to explore
appearance-based methods that directly learn a mapping
from eye appearance to on-screen or 3D gaze position.
These methods have a number of appealing properties
that make them particularly promising for use in daily-life
settings, such as increased robustness to varying
illumination conditions and camera resolutions.
Specifically, we have presented a new large-scale dataset
that we collected during everyday laptop use over more
than three months and that is significantly more variable
than existing ones with respect to appearance and
illumination (see Figure 1). We have also presented a
method based on a multimodal deep convolutional neural
network for in-the-wild appearance-based gaze estimation
that significantly outperforms previous methods [24].
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Currently, we are exploring learning-by-synthesis
approaches in which we use a large number of synthetic,
photo-realistic eye images for pre-training the network.
We have demonstrated that this approach significantly
out-performs state-of-the-art methods for eye-shape
registration as well as our own previous results for
appearance-based gaze estimation in the wild [22].

Computational Human Behaviour Analysis
Activity recognition, and in particular recognition of users’
activities from their visual behaviour, has been a focus of
our research since several years. In early work we have
shown, for the first time, that everyday activities, such as
reading or common office activities, can be predicted in
both stationary and mobile settings with surprising
accuracy from eye movement data alone [5, 4]. Eye
movements are closely linked to visual information
processing, such as perceptual learning and experience,
visual search, or fatigue. More recently we have therefore
explored eye movement analysis as a similarly promising
approach towards cognition-aware computing: Computing
systems that sense and adapt to covert aspects of user
state that are difficult if not impossible to detect using
other modalities [7]. We have been among the first to
demonstrate that selected cognitive states and processes
can automatically be predicted from eye movement, such
as visual memory recall [2], concentration [17], or
personality traits, such as perceptual curiosity [9].
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Figure 2: Unsupervised
discovery of everyday activities
from visual behaviour using a
latent Dirichlet allocation
(LDA) topic model.

Despite significant advances in analysing and
understanding human visual behaviour, the majority of
previous works have focused on short-term behaviour
lasting only seconds or minutes. We have contributed the
first work on supervised recognition of high-level
contextual cues, such as social interactions or being in or
outside, from long-term visual behaviour [6]. Recently, we

have extended that work with a new method for
unsupervised discovery of everyday activities [15]. We
have presented a method that combines a bag-of-words
representation of visual behaviour with a latent Dirichlet
allocation (LDA) topic model (see Figure 2) as well as a
novel long-term gaze dataset that contains full-day
recordings of natural visual behaviour of 10 participants
(more than 80 hours in total).

Symbiotic Human-Machine Vision Systems
We have been studying human-computer interaction using
gaze for several years. Starting from more classical
problem settings in gaze-based interaction, such as
interaction techniques for object selection, manipulation,
and transfer across display boundaries [19, 18]. We have
been particularly interested in extending the scope of gaze
interaction into everyday settings and in making these
interactions more natural. For example, we have
introduced smooth pursuit eye movements – the
movements we perform when latching onto a moving
object – as a natural and calibration-free interaction
technique for dynamic interfaces [21, 12]. We have also
proposed social gaze as a new paradigm for designing user
interfaces that react to gaze and eye contact as a form of
non-verbal communication in a similar way as
humans [20]. While gaze has a long history as a modality
in human-computer interaction, in these works we have
taken a fresh look at it and have demonstrated that there
is much more to gaze than traditional but limited
on-screen gaze location and dwelling.

State-of-the-art computer vision systems still
under-perform on many visual tasks when compared to
humans. We believe that collaborative vision systems that
combine the advantages of machine and human
perception and reasoning can bridge this performance gap.
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We have recently started to explore both directions of
collaborative vision, i.e. means of improving performance
of computer vision algorithms by incorporating information
from human fixations and vice versa. More specifically, we
have propose an early integration approach of human
fixation information into a deformable part model (DPM)
for object detection [14]. We have demonstrated that our
GazeDPM method outperforms state-of-the-art DPM
baselines and that it provides introspection of the learnt
models, can reveal salient image structures, and allows us
to investigate the interplay between gaze attracting and
repelling areas. In another work we have focused on
predicting the target of visual search from human
fixations [13]. In contrast to previous work we have
studied a challenging open-world setting in which we no
longer assumed that we have fixation data to train for the
search targets. Both of these works as well as an
increasing number of works by others in computer vision
and machine learning point at the significant potential of
integrating human and machine vision symbiotically.

Conclusion
In this work we have motivated the importance and
potential of non-verbal behavioural cues, in particular
gaze and body language, as a trailblazer for a new class of
collaborative human-machine systems that are highly
interactive, multimodal, and modelled after natural
human-human interactions. We have outlined three key
research challenges for realising this vision in
unconstrained everyday settings: pervasive visual and
physical human behaviour sensing, computational human
behaviour analysis, and symbiotic human-machine vision
systems. We have provided an overview of our previous
and ongoing efforts to address these challenges, and we
have highlighted individual works that represent and
illustrate the state of the art in the respective area.
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EOG goggles: Seamless sensing and
context-awareness in everyday environments. Journal
of Ambient Intelligence and Smart Environments 1, 2
(2009), 157–171.

4. Bulling, A., Ward, J. A., and Gellersen, H.
Multimodal Recognition of Reading Activity in
Transit Using Body-Worn Sensors. ACM Transactions
on Applied Perception 9, 1 (2012), 2:1–2:21.

5. Bulling, A., Ward, J. A., Gellersen, H., and Tröster, G.
Eye Movement Analysis for Activity Recognition
Using Electrooculography. IEEE Transactions on
Pattern Analysis and Machine Intelligence 33, 4 (Apr.
2011), 741–753.

6. Bulling, A., Weichel, C., and Gellersen, H. Eyecontext:
Recognition of high-level contextual cues from human
visual behaviour. In Proc. CHI (2013), 305–308.

7. Bulling, A., and Zander, T. O. Cognition-aware
computing. IEEE Pervasive Computing 13, 3 (July
2014), 80–83.

8. Fehringer, B., Bulling, A., and Krüger, A. Analysing
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