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ABSTRACT
In this work we describe the design, implementation and
evaluation of a novel eye tracker for context-awareness and
mobile HCI applications. In contrast to common systems
using video cameras, this compact device relies on Elec-
trooculography (EOG). It consists of goggles with dry elec-
trodes integrated into the frame and a small pocket-worn
component with a DSP for real-time EOG signal process-
ing. The device is intended for wearable and standalone use:
It can store data locally for long-term recordings or stream
processed EOG signals to a remote device over Bluetooth.
We describe how eye gestures can be efficiently recognised
from EOG signals for HCI purposes. In an experiment con-
ducted with 11 subjects playing a computer game we show
that 8 eye gestures of varying complexity can be continu-
ously recognised with equal performance to a state-of-the-
art video-based system. Physical activity leads to artefacts
in the EOG signal. We describe how these artefacts can
be removed using an adaptive filtering scheme and charac-
terise this approach on a 5-subject dataset. In addition to
HCI, we discuss how this paves the way for EOG-based
context-awareness, and eventually to the assessment of cog-
nitive processes.
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INTRODUCTION
Activity recognition is a key mechanism to devise context-
aware systems for mobile and ubiquitous computing. The
recognition of physical activity in mobile situations, for ex-
ample motion from body worn sensors, has been extensively
studied. However, context-awareness encompasses more than
mere physical activity. Aspects like user attention and in-
tentionality remain mainly unexplored as these cannot be
picked-up by sensors usually deployed in todays wearable
and pervasive computing scenarios.
A rich source of information about the state of the user can

be found in the movement of the eyes. This includes in-
formation related to the users’ activities and their cognitive
processes such as attention [10], saliency determination [7],
visual memory [13] and perceptual learning [4]. As part of
an ongoing project we seek to investigate up to which extent
these aspects can be inferred from the analysis of eye motion
to enable new kinds of context-aware applications. Explicit
eye movements performed by the user can directly be used
for HCI input. Mobile attentive user interfaces (MAUIs)
may also infer user intention and activity or provide assis-
tance to the user by analysing implicit eye movements.

In earlier work, we proposed Electrooculography (EOG) as a
novel measurement technique for wearable eye tracking and
the recognition of user activity and attention in mobile set-
tings [3]. EOG, in contrast to well established vision-based
eye tracking1, is measured with body-worn sensors, and can
be implemented as a wearable system. We envisioned wear-
able and unobtrusive EOG recordings to be implemented us-
ing electrodes integrated into glasses and the signals pro-
cessed in real-time on a light-weight device worn on the
body. In this paper we describe how this can be achieved,
and further extend this work by demonstrating how “eye ges-
tures” can be recognised from EOG for HCI purposes. The
specific contributions of this work are (1) the design and im-
plementation of a wearable EOG-based eye tracker for long-
term recordings in daily life implemented as goggles, (2) an
algorithm for continuous recognition of complex eye ges-
tures from EOG signals, (3) a characterisation in a computer
game where eye gestures are used for HCI and (4) the devel-
opment and evaluation of a new method for artefact removal
from EOG signals caused by walking.

RELATED WORK

Activity Recognition
Logan et al. studied activity recognition in an environment
instrumented with a large number and variety of common
sensors [11]. They found that among all activities, reading
was one of the most difficult to detect. They concluded that
in order to catch all types of physical activity in daily-life
scenarios, novel sensors and algorithms need to be devel-
oped.
A growing number of researchers investigate movements of
the eyes during daily activities. Important advances have
1With eye tracking we understand the recording of eye movements
in contrast to gaze tracking which deals with gaze direction.



been made to understand how the human brain processes vi-
sual tasks [6], how vision contributes to the organisation of
active tasks in everyday life [9] and how eye, head, and hand
movements are coordinated temporally [16]. However, eye
movements have not been used for activity or context recog-
nition so far.

Eye-based Interaction
Eye gaze recorded using vision has long been investigated
as a means to interact with a computer. Most HCI work
has focused on direct manipulation of user interfaces (e.g.
Zhai et al. [23]). Qvarfordt et al. explore an interactive
human-computer dialogue system which uses eye gaze pat-
terns to sense the users’ interests [17]. Drewes et al. propose
to use eye gestures consisting of several consecutive move-
ments to implement new ways of human-computer interac-
tion [5]. They show that these gestures are insensitive to
accuracy problems, immune against calibration shift and do
not exhibit the “Midas touch” problem (for details see [8]).

EOG-based Interfaces
Patmore et al. developed a system intended to provide a
pointing device for people with physical disabilities [15].
Basic signal characteristics such as saccades, fixations and
blinks have been used for controlling robots with the person
remaining stationary [22, 21]. For mobile scenarios, simi-
lar characteristics were used to operate a wearable computer
system for medical caregivers [14]. All of these studies show
that EOG can be implemented as an easy to operate and re-
liable interface. While these systems use basic eye move-
ments as an input, they do not make use of movement se-
quences to implement a more versatile input modality.

Eye Tracking Devices
The common method to track eye gaze in natural environ-
ments are systems based on video cameras. A number of
commercial eye trackers are available of which some are
targeted at mobile use, e.g. the iView X HED from Senso-
Motoric Instruments (SMI). Nevertheless, these systems still
require bulky headgear and additional equipment to process
the video streams. To our knowledge, at this stage no solu-
tion for video-based eye tracking exists that is unobtrusive
enough to allow for long-term recordings while leaving the
wearer unaffected during physical activity.
Several researchers investigate novel electrode configurations
for wearable EOG recordings. A gaze detector which uses
EOG electrode arrays mounted on ordinary headphones was
proposed by Manabe et al. [12]. While this approach might
be less obtrusive than electrodes sticked to the face, it turned
out to raise other issues: Low signal-noise ratio (SNR) and
poor separation of the movement components. Vehkaoja et
al. presented a light-weight head cap with electrodes em-
broidered of silver coated thread [19]. A small device inte-
grated into the cap allows for wireless data transmission. As
yet it is still to be evaluated in operation.

WEARABLE ELECTROOCULOGRAPHY
Eye Movement Characteristics
The eyes are the origin of a steady electric potential field
which can be described as a dipole with its positive pole at

the cornea and its negative pole at the retina. The magni-
tude of this so-called corneoretinal potential (CRP) lies in
the range of 0.4mV to 1.0mV. The CRP is the basis for a
signal measured between two pairs of electrodes commonly
placed above and below, and on the left and right side of the
eye, the so-called Electrooculogram (EOG).

If the eyes move from the centre position towards the pe-
riphery, the retina approaches one of the electrodes while the
cornea approaches the opposing one. This results in a change
in the electric potential. Inversely, eye movements can be
tracked by analysing these changes in the EOG signal. The
electrode pairs capture the horizontal and the vertical com-
ponent of eye motion. This requires good electrode place-
ment, i.e. on the eyes’ horizontal and vertical axes of mo-
tion, as otherwise increased crosstalk between both compo-
nents occurs. Usually, the signal amplitudes resulting from
horizontal eye movements are larger than those from vertical
movements. Therefore, crosstalk affects the vertical compo-
nent more severely. Signal crosstalk poses problems on ro-
bust detection of eye movement events and eye gaze tracking
for which both components need to be analysed simultane-
ously.

In the human eye, only a small central region of the retina,
the fovea, is sensitive enough for most visual tasks. This
requires the eyes to move constantly as only small parts of
a scene can be perceived with high resolution. Simultane-
ous movements of both eyes in the same direction are called
saccades. Typical characteristics of saccadic movements are
400◦/s for the maximum velocity, 20◦ for the amplitude and
80ms for the duration. Fixations are static states of the eyes
during which gaze is held at a specific location. Humans typ-
ically alternate saccadic eye movements and fixations while
perceiving their environment.

Design and System Architecture
The wearable eye tracking device was designed to fulfil the
following requirements:

• Wearable and light-weight to achieve a convenient and
unobtrusive implementation and minimise user distraction.

• On-board data storage and low-power to allow for au-
tonomous long-term recordings in daily life.

• Real-time capability to be able to perform online signal
processing directly on the device.

• Acceleration and light sensors to compensate for arte-
facts caused by physical activity and changes in ambient
light [1].

Hardware
The hardware is made of two components (see Figure 1):
Goggles with integrated electrodes and a signal processing
unit (called Pocket) with a credit card size of 82x56mm. The
Pocket can be worn on the body, e.g. in a cloth bag fixed
to one of the upper arms (see Figure 7). The system weighs
208g and is powered by a 3.7V / 1500mAh Li-polymer bat-
tery attached to the Pocket which allows for more than 7



hours of mobile eye movement recording. Raw EOG sig-
nals can be recorded on two channels with a sampling rate
of up to 250Hz and a resolution of 20 bits noise-free2.
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Figure 1. Two-part hardware architecture of the eye tracker with
EOG amplification (EOG X, EOG Y), accelerometer (ACC), light sen-
sor (LIGHT), DSP, analog-digital converters (ADC), EEPROM, Blue-
tooth module (BT) and MMC card holder.

The Goggles contain dry EOG electrodes and a small ana-
logue amplification circuit board with a size of 42x15mm
attached to the glasses frame. Four electrodes are arranged
around the left eye and mounted on flat springs to achieve
good skin contact. The EOG signal is composed of a small
voltage superimposed by a large offset voltage relative to the
ground electrode above the right eye. The offset is mostly
caused by stray electrical signals on the leads and there-
fore referred to as common-mode interference. If an elec-
tric circuit is able to efficiently reject this interference it has
a high common-mode rejection ratio (CMRR). To increase
the CMRR, a Driven Right Leg (DRL) circuit [20] is im-
plemented on the Goggles. Briefly, this circuit measures
the common mode noise and feeds its negative back into
the body to actively cancel the interference. Finally, an ac-
celerometer and a light sensor are attached to the component
with the latter pointing forward in line of incident light (see
Figure 2).

The Pocket is the core signal processing unit of the system. It
is based on a dsPIC micro-controller and contains two 24-bit
analog-digital converters (ADC), a Bluetooth and a MMC
module and an EEPROM. EOG signals coming from the
ADCs are processed in real-time and can either be transmit-
ted using Bluetooth or stored on the MMC. The EEPROM is
used to store configuration data and parameters for the signal
processing algorithms. Four LEDs and two buttons provide
a simple interface which allows the user to access the basic
functionality of the device.

Software
The dsPIC on the Pocket runs freeRTOS, an open-source
real-time operating system devised for embedded systems.
freeRTOS is configured to run in preemptive mode using
predefined task priorities. The firmware is composed of three
layers (see Figure 3). Among these layers, the Hardware
2The noise-free resolution of an ADC is the number of bits of reso-
lution beyond which it is impossible to distinctly resolve individual
outputs.
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Figure 2. Components of the EOG-based wearable eye tracker: armlet
with cloth bag (1), the Pocket (2), the Goggles (3) and dry electrodes (4).
The pictures to the right show the Goggles worn by a person with the
positions of the two horizontal (h) and vertical (v) electrodes, the light
sensor (l) and the accelerometer (a).

Abstraction Layer (HAL) accesses the hardware. It provides
a number of interfaces to the upper layers thus hiding all
low-level hardware access. The Device Layer (DEL) uses
the HAL to provide functionality for components external to
the DSP such as the Bluetooth and the MMC module. The
core functionality of the firmware is provided by 5 freeRTOS
tasks which form the Task Layer (TAL). A separate Library
(LIB) contains functionality which is shared by these tasks
such as the CRC routines.
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Figure 3. Three-tier software architecture of the eye tracker with layers
used for hardware abstraction and task management by the operating
system, access to external components and core functionality.

EOG SIGNAL PROCESSING
Eye gesture recognition is based on the detection of consec-
utive saccades which by their order and direction define the
type of eye gesture. These saccades need to be detected in
the continuous vertical and horizontal EOG signal streams.
Blinks need to be removed because their characteristics are
very similar to those of vertical eye movements and would
affect gesture recognition. In this section we describe the
processing steps required for the detection of blinks and sac-
cades and the removal of blinks. We then describe the al-
gorithms for eye gesture recognition and compensation of
EOG signal artefacts induced by walking.

Blink Detection
We detect blinks with a template matching approach: First,
a blink template is created using manually cutted equally-
sized raw signal segments of 10 blinks from different per-
sons, vertically shifted by their median and aligned at their
peaks. To create the template, the mean at each sample point
over all segments is calculated. Afterwards, blinks are de-
tected by shifting this template over the vertical EOG sig-



nal component by following a sliding window approach. In
each step, the Euclidean distance between the template and
the signal segment of the current window is computed as a
similarity metric. If the distance is below a defined thresh-
old, i.e. the similarity between the template and the current
segment is high, a blink event is recorded.

Saccade Detection
For saccade event detection we developed the so-called Con-
tinuous Wavelet Transform - Saccade Detection (CWT-SD)
algorithm [2]: The CWT-SD first computes the continuous
1-D wavelet coefficients from the signal at scale 20 using
Haar wavelets. A saccade event is detected for all samples
where the absolute value of the coefficient vector exceeds a
threshold. The direction and size of a saccade is given by its
sign and amplitude.

Blink Removal
For blink removal, the streams of saccade and blink events
are analysed in parallel. Blinks without simultaneous sac-
cades are directly removed from the signal. In case of a
simultaneous saccade, three cases need to be distinguished,
namely presaccadic blinks, postsaccadic blinks and intrasac-
cadic blinks. To maintain the essential signal characteristics
for the eye gesture recognition it is necessary to handle each
of these in a specific way:

Presaccadic blinks are caused by blinks which share their
last edge with a saccade. Presaccadic blinks are removed
by replacing the blink interval with the signal value at the
beginning of the blink.

Intersaccadic blinks usually occur during slow eye move-
ments or fixation periods. This type of blink is removed by
replacing its interval with a linear interpolation between the
value at the beginning and the value at its end.

Postsaccadic blinks are blinks which immediately follow a
saccade and thus share their first edge with it. For removal,
the blink interval is replaced with the signal value at the end
of the blink.

Eye Gesture Recognition
The idea of combining distinct relative movements to more
complex eye gestures was introduced in [5] for a video-based
eye tracker. We follow a similar approach for continuous
recognition of eye gestures based on EOG: Our algorithm
takes the streams of saccade events for the horizontal and
the vertical signal component as its input. It distinguishes
between eye movements in basic, diagonal and intermediate
directions (see Figure 4, top right corner): Basic directions
are left, right, up and down (L, R, U, D). Diagonal and inter-
mediate eye movements are characterised by simultaneous
saccades in both signal components but different angles (e.g.
I, 9, J).

For each saccade event the algorithm uses a time window of
0.06s to check for a second event in the other component.
If such an event is detected a diagonal eye movement has
occurred. The algorithm then uses the saccades’ amplitudes

and signs to combine and map them to the appropriate di-
agonal direction. If a second event is not found within the
given time window the initial saccade is directly mapped to
the corresponding basic direction. This scheme assigns each
eye movement a distinct event symbol, thus merging both
signal components into one event string sequence (see Fig-
ure 4).
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Figure 4. Eye movement event encoding from horizontal and vertical
EOG signals for gesture 3U1U: Windows marked in grey with distinct
eye movement events detected in the horizontal and vertical signal com-
ponent and final mapping to basic (U) and diagonal (3, 1) movements.
The top right corner shows the symbols representing the possible direc-
tions for eye movement encoding.

To recognise eye gestures which consist of several move-
ments, the event string sequence is scanned for eye move-
ment patterns following a string matching approach. To make
the recognition more robust, the symbols representing inter-
mediate directions are recognised as the nearest neighbour-
ing symbol (e.g. I as U or 9). For matching, the current
string sequence is continuously compared with string tem-
plates representing all possible gestures (see Table 1). For
each template, the edit distance between the templates and
the segment is calculated. If one of the templates exactly
matches the current segment (i.e. the edit distance is zero),
the corresponding eye gesture is recognised by the system.

Artefact Compensation
As EOG is measured with body-worn sensors, motion causes
signal artefacts in the signals and affects eye movement de-
tection. Walking is a common activity, e.g. on the way to
work, during the day or in spare time at the weekend. Thus,
walking serves as a good test bench for investigating arte-
facts induced by body motion. Analyses showed that arte-
facts in the EOG signals occur periodically according to the
step frequency. A median filter with fixed window size fails
to eliminate these artefacts for different persons and walking
speeds. A parameter sweep on the window size using ex-
ample data recorded from several subjects revealed that the
optimal size is strongly related to the temporal step length.
Therefore, we use an algorithm implementing an adaptive
filter. The idea is to exploit the repetitive characteristic of
walking and adapt the window size of the median filter to
the step length as long as walking activity is detected (see
Figure 5).

To detect walking, the algorithm first analyses the vertical



  

walking

vertical

horizontal

window
size

(a) (b) (c)
t [samples]

walking walking

Figure 5. Adaptive filter for artefact compensation while walking
slowly (a), moderate (b) and fast (c). Vertical acceleration signal and
threshold (dashed line) for detecting walking activity. Horizontal ac-
celeration signal and first derivative for calculating the step length. Re-
sulting window size used by the median filter at the bottom.

axis of the goggle-mounted accelerometer. If the correspond-
ing signal exceeds a defined threshold, the algorithm tries
to detect steps by searching for zero-crossings of the first
derivative of the low-pass-filtered acceleration data of the
horizontal axis (see [18] for details). Walking is assumed as
long as such steps are detected. In order to smooth out vari-
ations in walking style for different subjects, the step length
is calculated on the basis of three consecutive step move-
ments (e.g. right - left - right) separately for the left and the
right leg. By calculating the length continuously for each
step, the algorithm can adapt to different persons and walk-
ing speeds. For softer adaptation, only small increments are
applied (see Figure 5). If walking activity is not detected
anymore, the window size is incrementally set towards its
default and static value.

EXPERIMENT I - EYE GESTURES FOR STATIONARY HCI
The aim of this experiment is to assess the feasibility of us-
ing the wearable electrooculographic system for stationary
human-computer interaction. To investigate the use of ex-
plicit eye gestures, we developed a computer game consist-
ing of eight different game levels. In each game level, sub-
jects had to perform one defined eye gesture consisting of a
changing number of consecutive eye movements. The ges-
tures were selected and ordered to be of increasing complex-
ity (see Table 1).

The first gesture was added to make it easier for the sub-
ject to familiarise with the game. Gesture 2 through 6 were
inspired by [5] thus allowing to compare the results. The
last two gestures contain shorter eye movements to assess if
small-sized gestures can still be performed by the subjects
and recognised by the system.

Setup
The experiments were conducted using the wearable eye tracker
running at 100Hz sampling rate, a standard desktop com-
puter and a 17” flat screen with a resolution of 1024x768
pixels. As reference points for the calibration procedure red
dots were put at the corners and edges of the screen. The
subjects were seated in front of the screen facing its cen-
tre (see Figure 6). In contrast to a previous study [5], no
head stand was used, i.e. movements of the head and the up-

Level 1 Level 2 Level 3 Level 4

R1R DRUL RDLU RLRLRL

Level 5 Level 6 Level 7 Level 8

3U1U DR7RD7 1397 DDR7L9

Table 1. Eye gestures of increasing complexity and their string repre-
sentations used in the eight levels of the computer game (cf. Figure 4).
The grey dot denotes the start and the arrows the order and direction
of each eye movement.

per body were allowed at any time during the experiments.
However, we encouraged the subjects to sit upright with their
eyes about 55cm to 65cm away from the screen. The ex-
pected movement order and their directions were shown as
blue arrows with grey dots denoting the start and end point
of a movement (see Figure 6 for an example).
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Figure 6. Experimental setup consisting of a desktop computer run-
ning the game (1), the Goggles (2), a flat screen with red dots used for
calibration (3) and the Pocket (4). The screenshots on the right show
the sequence of eye movements and the generated event symbols for
gesture 3U1U (from top to bottom). The red dot denotes the start of the
gesture and the blue dot its end point. Blue arrows indicate the order
and the direction of each expected eye movement and are masked out
after having been successfully performed.

Experimental Procedure
In a first step, the classification thresholds were calibrated:
The threshold for blink detection was determined by asking
the subjects to blink 10 times and adjusting the threshold un-
til the corresponding peaks in the EOG signal exceeded the
threshold by about 30%. To calibrate for saccade detection,
the subjects were asked to look in alternation at two of the
red dots on opposite edges of the screen. To improve the cal-



ibration the same was repeated with an extra stopover at the
centre of the screen. Afterwards, the recognition was veri-
fied by asking the subjects to focus on each red dot at the
corners of the screen in clockwise order. The assistant then
checked the stream of eye movement events for errors and
initiated a re-calibration if necessary.

Gesture Accuracy [%]
S1 (m*) S2 (f) S3 (f) S4 (m†) S5 (m)

R1R 88 69 100 100 69
DRUL 100 71 100 100 86
RDLU 100 100 100 100 100
RLRLRL 100 100 95 93 100
3U1U 79 100 90 100 100
DR7RD7 90 95 78 71 90
1379 73 90 100 83 88
DDR7L9 95 91 93 71 89
Average 91 89 95 90 90

S6 (m*) S7 (m) S8 (m) S9 (m) S10 (m*) S11 (m*)
100 100 100 100 90 66
100 100 90 100 100 90
88 100 90 100 100 100

100 92 82 100 89 88
100 75 100 90 90 92
93 88 75 96 80 100
81 100 76 85 89 100
77 100 73 76 76 100
92 94 86 93 89 92

Table 2. Accuracy for the different gestures for each individual sub-
ject without test run. The accuracy gives the ratio of eye movements
resulting in a correct gesture to the total number of eye movements
performed. The table also shows the subjects’ gender (f: female, m:
male) and vision aid usually needed (*: glasses, †: lenses).

Once the calibration was successfully completed the exper-
iment was started. The subjects performed three runs with
all eight game levels being played in each run: The first was
a test run to introduce the game and verify the blink and
saccade thresholds for gesture recognition. No scores were
recorded in this initial run. In two subsequent runs the sub-
jects played all levels of the game again. In these two runs,
the subjects were asked to concentrate on the game as perfor-
mance measurements were taken to calculate the final game
score.

In each game level, the corresponding eye gesture was to
be repeatedly performed as fast as possible by the subject
until the first successful try. To reach a high score, wrong
eye movements, i.e. movements which were not part of
the expected gesture, had to be minimised. For each cor-
rect movement, the corresponding arrow was masked out on
the screen to reduce visual distraction. For the same rea-
son, each correct and incorrect eye movement was indicated
by a distinct sound. If a wrong eye movement was recog-
nised, the level was restarted and a penalty was rewarded on
the game score. Once a whole eye gesture was successfully
completed, the next game level was started showing the next
gesture. All wrong and correct eye movements as well as
the time required to complete each gesture were recorded

for each level. To trigger these measurements, the subject
had to press a button once before performing each gesture.
The total experiment time for each subject was about 25 min-
utes. At the end of the experiment, the subjects were asked
on their experiences on the procedure in a questionnaire.

Results
We collected data from 11 subjects - 2 female and 9 male
- between the ages of 24 and 64. (Originally there were 14
subjects, but 3 subjects had to be withdrawn due to poor sig-
nal quality resulting in calibration problems.) 4 subjects usu-
ally needed spectacles which they could not use during the
experiment. For the subjects who completed the experiment,
the average setup time was 7 minutes including putting on
the glasses as well as setting up and calibrating the record-
ing system.

The results for each individual subject only show a small
range of different accuracies (see Table 2). The results were
calculated solely using data from the second and the third
run as the first one was only for testing. The accuracy was
calculated as the ratio of eye movements resulting in a cor-
rect gesture to the total number of eye movements performed
in the level. The highest result is 95% (subject 3) while the
worst result was for subject 8, with an accuracy of 86%. It
can be seen from the table that performance does not corre-
late to the gender of the subject. Also the datasets recorded
from persons which usually need a vision aid do not show
significant differences to the others.

The average performance over all subjects is given in Table
3 which shows the time, time ratio and the accuracy Acc to
perform each of the eight gestures. TT denotes the total time
the subjects spent trying to complete each of the gestures
while the success time TS only measures the time spent on
all successful attempts.

Gesture TT [ms] TS[ms] TS / TT Acc[%]
R1R 3370 2890 0.858 85
DRUL 4130 3490 0.845 90
RDLU 3740 3600 0.963 93
RLRLRL 6680 5390 0.807 90
3U1U 4300 3880 0.902 89
DR7RD7 12960 5650 0.436 83
1379 6360 3720 0.585 84
DDR7L9 25400 5820 0.229 83

Table 3. Average performance for the different gestures over all sub-
jects without test run. TT is the total time spent to complete the gesture
and TS the success time spent only on successful attempts. The accu-
racy Acc is the ratio of eye movements resulting in a correct gesture to
the total number of movements performed until success.

Table 4 shows the average time required to perform five ges-
tures in comparison to a video-based system used in a previ-
ous study [5]. The raw times for EOG (TR EOG) and video
(TR Video) show that the latter performs much better. How-
ever, the experimental setups differed in one important as-
pect: In the previous study all gestures were performed us-
ing a static interface. In this work the arrows indicating the
direction were successively masked out as soon as the move-



ment was recognised correctly. While this approach reduced
visual distraction, it visually emphasised a characteristic of
the system: Due to the signal processing involved, recognis-
ing one distinct eye movement took about half a second. We
recognised that the subjects introduced a delay in waiting for
the arrows to disappear. This obviously affected their over-
all response time. To take this into account, we assumed all
movements had been performed without hiding the arrows.
We estimated the response time TR without delay as the av-
erage number of eye movements multiplied with the delay
and subtracted from the average total time TT .

Gesture TR[ms]
EOG EOG w/o delay Video

RDLU 3740 1630 1905
DRUL 4130 1520 1818
RLRLRL 6680 2860 3113
3U1U 4300 1940 2222
DR7RD7 12960 5890 3163

Table 4. Average response time TR required to perform five different
eye gestures over all subjects without initial test run in comparison to a
video-based system. The third column gives estimated times correcting
a difference in the experimental setups (see text for details).

EXPERIMENT II - EYE MOVEMENTS FOR MOBILE HCI
In this experiment, we target a mobile scenario and inves-
tigate how artefacts induced by physical activity can be de-
tected and compensated in EOG signals. The experimental
scenario involved subjects to perform different eye move-
ments on a head-up display (HUD) while standing and walk-
ing down a corridor. A custom software showed the expected
movements with a defined order and timing.

Setup
The experiments were done using the wearable eye tracker
running at 100Hz sampling rate, a standard laptop, a SV-
6 head-up display from MicroOptical with a resolution of
640x480 pixels mounted to the Goggles frame and a wear-
able keyboard Twiddler2 (see Figure 7).
The laptop was used to run the experimental software. Sim-
ilar to the first experiment, eye movements were indicated
on the HUD as arrows with a red dot denoting the start and
end point of each movement. During the experiments, the
laptop was worn in a backpack in order not to constrain the
subjects during walking. As the experimental assistant did
not have control over the system, once the experiment was
started, the Twiddler2 was needed to allow the subjects to
control the software and start the different recordings.

Experimental Procedure
The subjects were not the same as for the first experiment,
thus unfamiliar with the recording system. Therefore, they
were first trained on the game using the laptop screen. Once
the game was finished, the HUD was attached and the laptop
was put in the backpack to start the experiment. The subjects
performed three runs each consisting of different visual tasks
while standing and walking down a corridor (see Table 5). A
moving dot indicated the sequence and direction of the ex-
pected eye movements for each of these tasks. The subjects
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Figure 7. Experimental setup consisting of a head-up display (1), the
wearable eye tracker (2), a laptop (3) and a Twiddler2 (4). The screen-
shots on the right show the different eye movements performed in the
three runs: Fixations on the centre of the screen (a), simple movements
in vertical and horizontal direction L’RLRLRL’U’DUDUDU’ (b) and
additional movements along the diagonals 7’R1U3ULD9D7R1’ (c) (cf.
Figure 4, quotation marks indicate movements of only half the dis-
tance). The red dots in the centre denote the start; arrows indicate
the directions of the movements.

were asked to concentrate on their movements and fixate this
dot permanently. The timing was exactly specified which re-
sulted in one eye movement about every 3s.
The first run was carried out as a baseline case with fixa-
tions on the centre of the screen and large saccades without
using the HUD. In two subsequent runs the subjects were
asked to perform different sequences of eye movements on
the HUD while standing and walking: The second run only
contained simple movements in vertical and horizontal di-
rection. The third run also included additional movements
along the diagonals. Starting in the centre of the screen,
these two sequences encode to L’RLRLRL’U’DUDUDU’
and 7’R1U3ULD9D7R1’ (cf. Figure 4, quotation marks in-
dicate movements of only half the distance).

Results
We recorded 5 male subjects between the age of 21 and 27
totalling roughly 35 minutes of recording with walking ac-
tivity accounting for about 22 minutes. As the mobile set-
ting did not allow to record a ground truth, we decided to do
a comparison to assess a relative performance measure. In
a first step, the total number of detected saccades was cal-
culated using the raw data of all subjects. This was done
separately for run 2 and 3, for both standing and walking,
for each subject and for the horizontal and the vertical sig-
nal component. The thresholds for the saccade detection al-
gorithm were fixed to TsaccH = 700, TsaccV = 2000 for
all subjects and runs. This analysis was then repeated twice
with the same data: Once filtered by a median filter on a slid-
ing window with a fixed size of 20 samples (0.2s) and once



Run Visual task Activity
1. large horizontal eye movements standing

1 2. large vertical eye movements standing
3. fixation walking
4. fixation walking
1. simple eye movements standing

2 2. simple eye movements walking
3. simple eye movements walking
1. complex eye movements standing

3 2. complex eye movements walking
3. complex eye movements walking

Table 5. Experimental procedure consisting of three runs with per-
forming different eye movements: Baseline measurement with large
eye movements without using the head-up display and fixations, simple
(run 2) and complex (run 3) eye movements each while standing and
walking down a corridor.

after applying the adaptive filter. As the stationary results
were used as a reference the fixed window size was selected
to show good results for these recordings.

Figure 8 shows boxplots for the total number of detected
saccades in the horizontal EOG signal component of run 3.
Each box summarises the statistical properties of the data of
the 5 subjects: The horizontal red lines in each box indicates
the median and the upper and lower quartiles. The verti-
cal dashed lines indicate the data range, points outside their
ends are outliers. Boxes are plotted for the following cases:
stationary and raw signal, stationary and fixed median filter,
stationary and adaptive filter, walking and raw signal, walk-
ing and fixed median filter, walking and adaptive filter. The
single solid horizontal line indicates the expected number of
saccades defined by the experimental procedure.

What can be seen from the figure is that, in general, more
artefacts are detected as saccades in the vertical EOG sig-
nal component. In the stationary case, both filters perform
equally well but, compared to the expected number of sac-
cades, improve the results only slightly. During walking,
however, significant differences can be recognised: The raw
recordings show about eight times more detected saccades
than in the stationary case which renders eye movement de-
tection impossible. While the median filter with a fixed win-
dow size fails in removing these artefacts, the adaptive filter
still performs well, particularly for the horizontal EOG sig-
nal component.

DISCUSSION

On Eye Tracking Using EOG
In this work, a novel wearable eye tracker was described
and evaluated. In contrast to common solutions using video,
which require rather bulky equipment, this compact device is
based on EOG. This enables a light-weight and unobtrusive
integration into goggles which makes the system suited for
mobile recordings in daily-life. As EOG requires much less
computational power, this allows for low-power design and
on-board storage which are crucial points for autonomous
long-term recordings.
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Figure 8. Boxplots for the total number of detected saccades in the hor-
izontal (1) and vertical (2) EOG signal component of run 3 with fixed
thresholds TsaccH = 700, TsaccV = 2000 over all subjects: station-
ary/raw (a), stationary/fixed median filter (b), stationary/adaptive filter
(c), walking/raw (d), walking/fixed median filter (e), walking/adaptive
filter (f). Horizontal red lines in each box indicate the lower quartile,
median and upper quartile; dashed vertical lines show the data range;
outliers are given as red crosses; the single solid horizontal line indi-
cates the expected number of saccades.

Our results show that EOG performs equally well to video
if gaze tracking is not required. In the same way as video-
based systems, EOG requires a calibration procedure. Once
the thresholds are set, EOG is robust to varying distances be-
tween the person and the screen. In mobile settings with dif-
ferent screen sizes, the algorithm for eye gesture recognition
using video introduced in [5] may require the grid size and
timeout parameters to be continuously adapted. This is dif-
ficult to achieve automatically without knowing the screens’
dimensions and the user’s relative distance. With EOG, the
thresholds only need to be adapted if the screen size is re-
duced considerably. By implementing a procedure which



automatically detects if a recalibration is required, adapta-
tion can be performed in the background without distracting
the subject.

Wearability and comfort are important for long-term use.
Nine subjects from our study reported that they felt uncom-
fortable due to rather high electrode pressure especially be-
low the eye. In the questionnaire, however, they did not re-
port of having felt physically constrained or distracted dur-
ing the game by wearing the goggles. For 3 out of 14 sub-
jects eye movements could not be detected. For the first sub-
ject, the goggles did not fit well which resulted in a lot of
crosstalk in the vertical signal component. Suitable thresh-
olds could not be found as the crosstalk was almost as strong
as the vertical signal itself. For the second subject, probably
due to dry skin, the vertical signal component was poor even
though the goggles did fit well. The third subject declared af-
terwards having been very tired during the experiment. This
could clearly be seen in the EOG signal by the presence of a
lot of blinks and correctional saccades. These artefacts could
not be removed completely and rendered eye gesture recog-
nition impossible. We aim to solve these problems with the
next prototype of the eye tracker which is currently under
development. This includes revised goggles which can more
easily be adapted to individual differences in head shape and
size and which provide a mechanically improved electrode
mounting.

On EOG-Based Eye Gestures
From the first experiment we found that EOG is a potentially
robust input modality for HCI applications. EOG signals can
be efficiently processed to recognise even complex gestures
consisting of different consecutive eye movements. Table 4
shows that a set of gestures used to play a computer game
can be recognised with equal performance to a video-based
system. It has to be noted, however, that we estimated part of
the results due to a different experimental setup. Still, we are
confident this estimation is reasonable on average and that
the eye tracker would still perform comparably after chang-
ing this setup.

The concept of playing a computer game using eye gestures
was quickly understood by all subjects. We see in Table 2
that all of them were able to achieve a eye gesture accuracy
of around 90% and often managed to perform the various
gestures at the first try. Surprisingly, the accuracy for the
easiest gesture in the first game level was similar to the last
two (see Table 3). A possible explanation for this might be
that the players were more inexperienced at the beginning
and needed time to accustom to the game.

Although not shown here, from their performance we found
that all subjects quickly learned how to use their eyes as a
control input. However, using explicit eye gestures remained
odd and 30% of the subjects reported of having had prob-
lems to stay concentrated during the experiment. They ac-
counted this to the fact that controlling their eye movements
consciously was a bit tiring. However, fatigue is an intrin-
sic problem not only for eye gestures but also for common
input modalities such as speech or hand gestures. Eye ges-

tures outperform these modalities if the hands can not be
used (e.g. during driving, during a surgery or while working
on the computer) or if speech input is not possible (e.g. for
privacy reasons or in very silent or very noisy surroundings).

Six subjects usually needed vision aids which they could
not use during the experiment. Surprisingly, Table 2 shows
that these subjects performed equally well compared to those
with normal sight. At least for the distance between the sub-
ject and the screen used in the experiment, the missing sight
correction did not prevent to perform the different gestures
successfully. However, it is clear that with a view to long-
term use in ubiquitous settings with a variety of interfaces in
different distances, goggles which still allow to use specta-
cles at the same time are desirable.

By analysing the overall performance we uncovered an inter-
esting result: Gestures only consisting of large movements
in the horizontal, vertical and diagonal directions worked
well while those with smaller scale were more difficult to
detect reliably. This is probably caused by the low ampli-
tudes in the vertical EOG signal also recognised in the sec-
ond experiment. This might be solved by simple means, e.g.
by optimising the electrode placement and mounting or by
designing HCI interfaces which rely on eye gestures per-
formed mostly on the horizontal axis or with larger vertical
eye movements. For mobile HCI with simultaneous physical
activity, these aspects will become even more important.

On Artefact Compensation
From the experiments we found that for EOG recordings,
particularly in mobile settings, efficient algorithms able to
cope with signal artefacts caused by physical activity are re-
quired. Without compensation, artefacts may dominate the
signal which renders eye movement detection impossible.
Figure 8 shows that the proposed adaptive filter tuned to the
walking pace can remarkably reduce the number of artefacts
caused by walking activity. For long-term eye movement
recordings with a wide range of different activities which
constantly change during the day, more complex algorithms
are clearly needed.

Conclusion
In this work we have shown the feasibility of building an
autonomous eye tracker based on EOG. The device can be
worn on the body which makes it particularly suited for long-
term eye movement analysis in daily-life. A major benefit of
EOG lies in the minimal amount of power and computation
that is required for signal processing. By connecting several
eye trackers, concurrent eye movement recordings for sev-
eral people and distributed activity recognition may become
possible. We have also shown that recognition of explicit eye
gestures from EOG can be implemented as efficiently and
robustly across different subjects as for video-based systems.
EOG-based eye input allows for versatile human-computer
interaction and may eventually provide new means of light-
weight interaction in mobile settings by complementing cur-
rent input modalities.

Our long-term objective is to investigate how much infor-



mation eye motion can provide about the user’s activity and
context. In addition to further HCI refinements, we plan to
investigate unconscious eye movements. Unconscious eye
movements are the result of cognitive processes in the hu-
man brain. These processes are related to external aspects
such as the user’s activity or his environment, but also to
internal aspects of visual perception, memory and learning.
The analysis of eye motion thus may allow to access these
underlying cognitive aspects. This would give important in-
put for future context-aware systems.
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