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Abstract. In this paper we consider the task of articulated 3D human pose esti-
mation in challenging scenes with dynamic background and multiple people. Ini-
tial progress on this task has been achieved building on discriminatively trained
part-based models that deliver a set of 2D body pose candidates that are then sub-
sequently refined by reasoning in 3D [1, 4, 5]. The performance of such methods
is limited by the performance of the underlying 2D pose estimation approaches.
In this paper we explore a way to boost the performance of 2D pose estimation
based on the output of the 3D pose reconstruction process, thus closing the loop
in the pose estimation pipeline. We build our approach around a component that
is able to identify true positive pose estimation hypotheses with high confidence.
We then either retrain 2D pose estimation models using such highly confident hy-
potheses as additional training examples, or we use similarity to these hypotheses
as a cue for 2D pose estimation. We consider a number of features that can be used
for assessing the confidence of the pose estimation results. The strongest feature
in our comparison corresponds to the ensemble agreement on the 3D pose output.
We evaluate our approach on two publicly available datasets improving over state
of the art in each case.

1 Introduction and related work

In this paper we consider the task of articulated 3D human pose estimation from multi-
ple views. We focus on the setting with uncontrolled environment, dynamic background
and multiple people present in the scene, which is more complex and general compared
to the motion capture studio environments often considered in the literature [7, 13, 17].
One of the key challenges in that setting is that the appearance of people is more di-
verse, and simple means of representing observations based on background subtraction
are not applicable due to the presence of multiple people and interactions between peo-
ple and scene objects. Inspired by recent results in 2D pose estimation [3, 18], several
approaches have proposed to build upon and adapt these results for pose estimation in
3D [1, 4, 5, 12]. In these approaches 2D detectors are either used to model the likelihood
of the 3D pose [5, 12], or provide a set of proposals for positions of body joints that are
subsequently refined by reasoning in 3D [1, 4]. Improving the 2D pose estimation per-
formance is thus crucial for each of these methods. Towards this goal we propose an
approach to tune the 2D pose estimation component at test time.

Generally, one would expect that the pose estimation results should improve if one
is continuously observing the same scene with the same human subjects, as one would
be able to learn more specific appearance models than is possible in the general case.
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Fig. 1: Overview of our approach. Top row: In the first stage we estimate 3D poses of people
in each frame with an ensemble of multi-view pictorial structures models. Output of the models
from the ensemble is shown in blue, red and black. We select highly confident key-frames either
based on (1) agreement between models in the ensemble, or (2) using a classifier trained on
features computed from these outputs. The green bounding box indicates a selected key-frame.
Bottom row: Output of our final model that incorporates evidence from the keyframes.

However, with a few exceptions [6, 14], this idea is rarely explored in the literature,
likely because it is unclear how to robustly estimate the person-specific appearance
in the presence of noise in the pose estimation. Various approaches for estimating the
confidence of the pose prediction have been considered in the literature, ranging from
models that are discriminatively trained for both detection and pose estimation [18] to
specialized methods that estimate confidence based on the combination of features as
a post-processing step [11]. In this paper we follow the direction similar to [11] but
also employ features based on the 3D pose reconstruction, which we find to be highly
effective for filtering out incorrect pose estimates. Overall we make the following con-
tributions. As a main contribution of this paper we propose a new approach for articu-
lated 3D human pose estimation that builds on the multi-view pictorial structures model
[1], and extends it to adapt to observations available at test time. Our approach has an
interesting property that it operates on the entire test set, making use of the evidence
available in all test images. This is in contrast to prior works [1, 4, 5, 12] that typically
operate on single-frames only or are limited to temporal smoothness constraints which
are effective only in a small temporal neighborhood of each frame [2, 16]. As a second
contribution we evaluate two approaches to assess the accuracy of 3D pose estimation.
The first is to train a discriminative model based on various pose quality features as in
[11], and the second is to consider the agreement of an ensemble of several indepen-
dently trained models on the 3D pose output. An interesting finding of our evaluation
is that pose agreement alone performs on-par or better than the discriminatively trained
confidence predictor. The combination of both approaches further improves the results.

Overview of our approach. In this paper we build on the multi-view pictorial structures
approach proposed in [1]. This approach first jointly estimates projections of each body
joint in each view, and then recovers 3D pose by triangulation. We explore two mecha-
nisms for improving the performance of the multi-view pictorial structures model. Both
of them are based on the observation that 3D pose reconstruction provides strong cues
for identification of highly confident pose estimation hypotheses (= key-frames) at test
time (see Fig. 1 for a few examples). We explore two ways to take advantage of such
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key-frame hypotheses. We either directly use them as additional training examples in
order to adapt the 2D pose estimation model to the scene at hand, or we extend the pic-
torial structures model with an additional term that measures appearance similarity to
the key-frames. As we show in the experiments both mechanisms considerably improve
the pose estimation results. In the following we first introduce the multi-view pictorial
structures model and then describe our extensions.

2 Multi-view pictorial structures

The pictorial structures model represents a body configuration as a collection of rigid
parts and a set of pairwise part relationships [8, 10]. We denote a part configuration as
L = {li|i = 1, . . . , N}, where li = (xi, yi, θi) corresponds to the image position and
absolute orientation of each part. Assuming that the pairwise part relationships have a
tree structure the conditional probability of the part configuration L given the image
evidence I factorizes into a product of unary and pairwise terms:

p(L|I) = 1

Z

N∏
n=1

fn(ln; I) ·
∏

(i,j)∈E

fij(li, lj). (1)

where fn(ln; I) is the likelihood term for part n, fij(li, lj) is the pairwise term for parts
i and j and Z is a partition function.

Multi-view model: Recently [1, 5] have extended this approach to the case of 3D human
pose estimation from multiple views. In the following we include the concise summary
of the multiview pictorial structures model that we use in our experiments and refer the
reader to the original paper [1] for more details.

The multiview pictorial structures approach proposed by [1] generalizes the single-
view case by jointly reasoning about the projections of body parts in each view. Let
Lv denote the 2D body configuration and Iv the image observations in view v. Mul-
tiview constraints are modeled as additional pairwise factors in the pictorial structures
framework that relate locations of the same joint in each view. The resulting multiview
pictorial structures model corresponds to the following decomposition of the posterior
distribution:

p(L1, ..., LV |I1, ..., IV ) =
1

Z

∏
v

f(Lv; Iv)
∏
(a,b)

∏
n

fappn (lan, l
b
n; Ia, Ib)f

cor
n (lan, l

b
n),

(2)

where {(a, b)} is the set of all view-pairs, lvn represents the image position of part n in
view v, in contrast lvn in addition to image position also includes the absolute orienta-
tion, f(Lv; Iv) are the single-view factors for view v which decompose into products
of unary and pairwise terms according to Eq. 1, and fappn and f corn are multiview ap-
pearance and correspondence factors for part n. The inference is done jointly across all
views. The 2D pose estimation resutls are then triangulated to reconstruct the final 3D
pose.



4 S. Amin, P. Müller, A. Bulling, M. Andriluka

3 Test-time adaptation

Our approach to test-time adaptation is composed of two stages. In the first stage we
mine confident pose estimation examples from the test data. These examples are then
used in the second stage to improve the pose estimation model. We now describe these
stages in detail.

3.1 Confident examples mining

The objective of the first stage is to identify the test examples for which the initial model
succeeded in correctly estimating the body pose. To that end, we consider two methods
to assess the accuracy of pose estimation.

3D pose agreement. In the first method we proceed by training an ensemble ofM mul-
tiview pictorial structure models. Each model in the ensemble is trained on a disjoint
subset of the training set. In addition we also train a reference model using all training
examples. The rationale behind this procedure is that the reference model will typically
perform better than ensemble models as it is trained on more examples. Ensemble mod-
els will in turn provide sufficient number of independent hypothesis in order to assess
the prediction accuracy. At test time we evaluate the agreement between the pose hy-
potheses estimated by ensemble models and the reference model. Given the estimated
3D poses from all models, we define the pose agreement score spa as:

spa = exp

(
−
∑
n

∑
m ‖xmn − x̂n‖22
N

)
, (3)

where xmn represents the 3D position of part n estimated with the ensemble model
m ∈ {1, ...,M}, and x̂n is the location of part n estimated with the reference model.

Pose classification. As a second method we train a discriminative AdaBoost classi-
fier to identify correct 3D pose estimates. The classifier is trained using the following
features:

1. 3D pose features. These features encode the plausible 3D poses and correspond to
the torso, head and limb lengths, distance between shoulders, angles between upper
and lower limbs, and angles between head and shoulder parts.

2. Prediction uncertainty features. We encode the uncertainty in pose estimation by
computing the L2 norm of the covariance matrix corresponding to the strongest
mode in the marginal posterior distribution of each part in each view. This is the
same criteria as used for component selection in [1] and is similar to the features
used in [11].

3. Posterior. As a separate feature we also include the value of the posterior distribu-
tion corresponding to the estimated pose that is given by Eq. 2.

We concatenate these three types of features to produce a combined feature vector of
the size 20+2V N for the upper-body and 26+2V N for the full-body case, where V is
the number of views and N is the number of parts in the pictorial structures model. We
rely on a disjoint validation set for training of the pose classifier. We consider 3D poses
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(a) Upper Arms (b) Lower Arms

Fig. 2: MPIICooking dataset: Key-frame selection using score based on the posterior marginal
of the model from [1] (blue) compared to variants of our approach. Best result corresponds to
combination of ensemble agreement and pose classification scores given by Eq. 5 (magenta).

with all body parts estimated correctly to be positive examples and all other examples
as negative. Body part is considered to be correctly estimated if both of its endpoints
are within 50% of the part length from their ground-truth positions. The classifier score
corresponding to the mth pictorial structure model sabc,m is given by the weighted sum
of the weak single-feature classifiers hm,t with weights αm,t learned using AdaBoost:

sabc,m =

∑
t αm,thm,t(xm)∑

t αm,t
(4)

Combined approach. Finally, we consider a weighted combination of agreement and
classification scores:

scomb = spa +
∑
m

wmsabc,m, (5)

where the weights of the classifier scores are given by wm =
∑

m̂6=m φm̂

(M−1)
∑

m̂ φm̂
, and φm̂

are given by the training time mis-classification error. As we demonstrate in section 4
such combination improves results over using each approach individually.

3.2 2D model refinement

At test-time we choose 10% of the highest scoring pose hypotheses according to one
of the scoring methods described in Sec. 3.1 and denote them as key-frames. We in-
vestigate two different avenues to use key-frames in order to improve pose estimation
performance.
Retraining: We retrain the discriminative part classifiers by augmenting the training
data with part examples from the key-frames and n = 5 of their nearest neighbors,
mined from the entire test set. To compute nearest neighbors we encode each part hy-
pothesis using shape context features sampled on the regular grid within the part bound-
ing box and bounding box color histogram. The nearest neighbors are then found using
euclidean distance in this feature space. For the rest of the paper, we refer to this ap-
proach as RT.
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(c) Upper Legs (d) Lower Legs

Fig. 3: Shelf dataset: Key-frame selection using score based on the posterior marginal of the
model from [1] (blue) compared to variants of our approach.

Appearance similarity: We introduce additional unary term for each part in the picto-
rial structures model that encourages similarity to key-frames. The similarity term for
part n is given by:

fSIM (ln; I) = exp

(
−minj ‖e(ln)− e(anj)‖22

2 ∗ σ2
n

)
, (6)

where ln is image position and absolute orientation of the part hypothesis, anj is a
hypothesis for part n from the j-th key-frame, and e(ln) corresponds to shape-context
and color features extracted at ln. The variance σ2

n is estimated based on the euclidean
distances between all feature vectors corresponding to part n in the training set. We
refer to this approach as SIM later in text.

4 Experiments

Datasets: Our aim is to analyze the performance of our proposed approach in challeng-
ing settings with dynamic background and a variety of subjects. Therefore, we evaluate
our approach on MPII Cooking [15] and the Shelf [4] datasets. Both of these datasets
have been recently introduced for the evaluation of articulated human pose estimation
from multiple views.
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Fig. 4: Examples of pose estimation results obtained with our approach and comparison to the
state-of-the-art approach of Amin et al. [1] on the MPII Cooking dataset.

MPII Cooking: The dataset was originally recorded for the task of fine grained activity
recognition of cooking activities, and has been later used in [1] to benchmark the per-
formance of 3D pose estimation. This evaluation dataset consists of 11 subjects with
non-continuous images and two camera views. The training set includes 4 subjects and
896 images and the test set includes 7 subjects and 1154 images.

Shelf dataset: This dataset has been introduced in [4] and is focused on the task of
multiple human 3D pose estimation. The dataset depicts up to 4 humans interacting
with each other while performing an assembly task. The Shelf dataset provides 668 and
367 annotated frames for training and testing respectively. For every frame each fully
visible person is annotated in 3 camera views.

In our evaluation we rely on the standard train/test split and evaluation protocols as
used by the original publications. As described in section 3, we split the training set in
multiple parts to train an ensemble of pose estimation models.

Key-frames Analysis: We analyze the performance of our key-frame detection proce-
dure using recall-precision curves. The results are shown in Fig. 2 and 3. In this analysis
we omit the torso and head body parts as they are almost perfectly localized by all ap-
proaches. For all other parts, which are smaller in size hence more susceptible to noise,
we observe that directly using the marginal posterior of the PS model as pose confi-
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Fig. 5: Examples of pose estimation failures on the MPIICooking dataset.
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Fig. 6: Examples of pose estimation results of our approach on the Shelf dataset. Last column
shows an example of the failure case.

dence leads to poor results (blue curve in Fig. 2 and 3). On the MPII Cooking dataset
we get AP of 67.9/63.9 for upper/lower arms respectively using this marginal posterior
as confidence measure. On the other hand, training a classifier with posterior and vari-
ance features improves the AP to 70.7/66.9. The performance of the classifier increases
further to 72.5/69.2 when we extend the feature vector with 3D pose cues. This result
underlines the importance of 3D pose features for classification. Interestingly, the re-
sults of the pose agreement approach of Eq. 3 i.e. 72.1/69.9, suggest that this measure
alone is almost equally effective. Combining both (classifier & pose agreement) scores
as in Eq. 5, we step up the average precision of the detected key-frames to 72.9/70.4.
These results show the importance of different levels of features in the process of ex-
tracting key-frames with high confidence.

The recall-precision curve for the Shelf dataset are shown in Fig. 3. Although, here
the detection of lower arms is significantly more difficult, but the AP results for both
upper and lower arms are in line with the MPII Cooking AP values. The AP values are
slightly worse for the classifier score compared to pose agreement. For the legs, pose
agreement alone outperforms the combined score of Eq. 5 i.e., 83.0/66.8 as compared
to 82.5/63.5 for upper/lower legs. The reason for this behavior is the significantly worse
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upper arm lower arm
Model Torso Head r l r l All
Cam-1
Amin et al. [1] 92.9 89.4 72.6 79.4 68.8 76.8 80.0
our (RT) 95.2 93.8 75.3 83.4 73.6 80.9 83.6
our (SIM) 95.8 92.5 74.0 82.6 73.5 82.2 83.4
our (RT+SIM) 95.8 94.0 74.8 83.3 74.2 82.3 84.0

Cam-2
Amin et al. [1] 91.1 92.4 75.4 76.7 72.9 74.7 80.5
our (RT) 92.1 95.5 79.2 82.8 76.9 78.8 84.2
our (SIM) 92.4 96.2 79.5 81.6 77.1 79.6 84.4
our (RT+SIM) 92.6 96.2 78.9 83.3 77.1 79.7 84.7

Table 1: MPII Cooking: accuracy measured using percentage of correct parts (PCP) score [9].
We compare the model of Amin et al. [1] with variants of our approach. RT stands for model
retraining, SIM stands for a model augmented with similarity factors.

Belagiannis et al. [4] our (RT) our (SIM) our (RT+SIM)

Actor1 66 68.5 72.1 72.0
Actor2 65 67.2 69.4 71.3
Actor3 83 83.9 84.9 85.7

Average 71.3 74.4 77.0 77.3

Table 2: Shelf dataset: accuracy measured using 3D PCP score. We compare the model of Bela-
giannis et al. [4] with variants of our approach. RT stands for model retraining, SIM stands for a
model augmented with similarity factors.

performance of the classifier of Eq. 4. This result suggests the need to learn weights
when combining different scores as in Eq. 5. This we will investigate in future work.
For the Shelf dataset the training and test splits contain the same subjects. Moreover,
the training data splits for ensemble of multiview pictorial structure models also contain
the same subjects. This explains the higher preformance of the pose agreement cue
compared to the classifier output.

Pose estimation results: Here we discuss the improvement we achieve in pose esti-
mation performance when we incorporate these key-frames for 2D model refinement
as discussed in Section 3.2. We use score of the combined approach scomb to select the
key-frames. Following [1, 15, 16], we use body-joints instead of limbs as parts in the
pictorial structures model. This approach is commonly referred to as flexible pictorial
structures model (FPS).

MPII Cooking: We use the standard pose configuration, i.e., 10 upperbody parts as in-
troduced in [15]. Amin et al. [1] reports the percentage of correct parts (PCP) for the
2D projections per camera for this dataset. First, we evaluate our proposed retraining
approach (RT) to improve overall pose estimation accuracy by adapting the model to
test scene specific settings. We show the PCP results for MPII Cooking in Table 1.
Our RT approach achieves 83.6/84.2 overall PCP and shows improvement for all indi-
vidual parts. This improvement can be attributed to the fact that retraining the model
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including the mined examples can learn the person/scene specific features. The other
approach (SIM) which involves adding a new unary term, based on the feature simi-
larity, to the pictorial structures model also achieves competitve results, i.e., 83.4/84.4
overall PCP. The improvement in this case is more pronounced on the lower arms com-
pared to retraining the model. Furthermore, we also evaluate the combination of the
two approaches RT+SIM. In this approach, along with retraining the part classifiers
using the appearance features from the key-frames we also introduce the appearance
similarity based unary term fSIM to the multiview pictorial structures framework. The
results in Table 1 show that this works best because it combines the benefits of both
approaches and results in stronger unaries for the part hypotheses. We illustrate some
example improvements of our approach in Fig. 4, as compared to [1] on MPII Cooking
dataset. Fig. 5 demonstrates some typical failure cases of our approach.

Shelf dataset: We use a full body model with 14 parts in this case as described in
the original paper [4]. The accuracy of the approach from [4] is bounded by the per-
formance of the 2D part detectors. Their model is unable to recover once the 2D part
detector fails to fire in the first stage. On the other hand, as our approach is able to
utilize the test scene specific information, we achieve far better results in terms of PCP
values. Table 2 shows the 3D PCP values in comparison to the recent results of [4].
Our first approach, i.e., retraining the model RT, outperforms the approach from [4] by
3% PCP. Interestingly, we get 77.0 PCP with our second approach SIM which involves
model inference using an extra similarity term and it outperforms our RT approach by
further 2.6%. This result can be explained by the fact that all dimensions of the appear-
ance feature vector are considered equally in this approach. There exist some features
which do not perform well during the feature selection process in AdaBoost when learnt
together with the training set. Still, they contain similarity information for the test ex-
amples when compared against the mined key-frames in terms of euclidean distance for
the complete feature vector. Further gain of 0.3 PCP is obtained by combining RT with
SIM. Some examples of qualitative results on Shelf dataset are depicted in Fig. 6.

5 Conclusion

In this paper we proposed an approach to 3D pose estimation that adapts to the input
data available at test time. Our approach operates by identifying frames in which poses
can be predicted with high confidence and then uses them as additional training exam-
ples and as evidence for pose estimation in other frames. We analyzed two strategies for
finding confident pose estimates: discriminative classification and ensemble agreement.
Best results are achieved by combining both strategies. However, ensemble agreement
alone already improves considerably over the confidence measure based on the picto-
rial structures output. We have shown the effectiveness of our approach on two publicly
available datasets. In the future we plan to generalize our approach to multiple rounds of
confident examples mining, and will explore other approaches for automatic acquisition
of training examples from unlabeled images.

Acknowledgements. This work has been supported by the Max Planck Center for
Visual Computing and Communication.
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