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Abstract— Despite significant advances in using Steady-State
Visually Evoked Potentials (SSVEP) for on-screen target dis-
crimination, existing methods either require intrusive, low-
frequency visual stimulation or only support a small number of
targets. We propose SSVEPNet: a convolutional long short-term
memory (LSTM) recurrent neural network for high-frequency
stimulation (≥30Hz) using a large number of visual targets. We
evaluate our method for discriminating between 43 targets on
an extended alphanumeric virtual keyboard and compare three
different frequency assignment strategies. Our experimental
results show that SSVEPNet significantly outperforms state-
of-the-art correlation-based methods and convolutional neural
networks. As such, our work opens up an exciting new direction
of research towards a new class of unobtrusive and highly
expressive SSVEP-based interfaces for text entry and beyond.

I. INTRODUCTION

Steady-State Visually Evoked Potentials (SSVEP) are nat-
ural brain responses at a frequency that matches periodic
(flickering) visual stimuli [5]. In turn, by comparing the
frequency of the SSVEP response to them, different vi-
sual targets can be discriminated. SSVEP-based text entry
has been explored as a particularly promising use case
for SSVEP [11] with recent years having seen increasing
research activities in this area. In particular, research recently
focused on increasing the number of visual targets (up to 40)
using frequency-phase joint encoding and approximations
methods [7, 12, 13] as well as on pushing classification
accuracy (∼90%) [7, 12].

Despite significant advances, prior works fall short in
two aspects that are particularly crucial for future, practical
application of SSVEP-based interaction. For one, prior work
largely studied low frequency stimulation (8Hz-16Hz). These
visual stimuli can induce clear SSVEP responses but are
visually intrusive to users and can easily cause fatigue [19].
This is in line with the finding of a prior study [17], which
suggested that low frequencies (6–14.9 Hz) caused more
discomfort compared with high frequencies (26–34.7 Hz).
Second, studies that have explored high frequency stimula-
tion (>20Hz) have either only classified a small number (≤5)
of targets [2, 18] or required specialized equipment for visual
stimulation, such as external LEDs [6, 17].

At the same time, recent deep learning techniques have
been demonstrated to achieve a promising performance for
SSVEP classification tasks. Recent breakthroughs include
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Fig. 1. We propose SSVEPNet: a convolutional LSTM network to
discriminate 43 on-screen targets of an extended alphanumeric virtual
keyboard from high-frequency Steady-State Visually Evoked Potentials
(SSVEP) responses. Details of the architecture are shown in Fig. 4.

the use of Convolutional Neural Networks (CNNs) [16]
and Deep Recurrent Convolutional Networks [3] for SSVEP
classification and for top-down SSVEP decoding [1]. All of
these studies primarily aimed to identify an optimal feature
representation. The most challenging, but also practically
most relevant, discrimination of a large number of targets
using unobtrusive, high-frequency visual stimulation on an
off-the-shelf computer screen remains unexplored.

This paper presents the first study that exploits high-
frequency stimulation for SSVEP-based desktop applica-
tions. Specifically, we investigate a virtual QWERTY-style
keyboard input as an example (see Fig. 1). To ensure that our
findings can be generalized for other desktop applications,
we rely on no dedicated equipment and show visual stimuli
on a computer screen. We also study pertinent frequency
assignment strategies in such applications, including suitable
frequency ranges of all targets, the minimal frequency dif-
ference between targets, and different frequency decoding
methods. As SSVEP response to high frequency stimulation
is much weaker than that of low frequency stimulation,
this task is considerably more challenging [19]. To address
this, we propose SSVEPNet: a convolutional long short-term
memory (LSTM) recurrent neural network for SSVEP-based
target discrimination. Our experimental results demonstrate
that SSVEPNet achieves an accuracy improvement of 25%
over the state-of-the-art methods that used Canonical Corre-
lation Analysis (CCA) [7, 10] and CNNs [4, 16].

The contributions of our work are three-fold. First, we
conduct the first study on offline SSVEP-based keyboard
input using high frequency stimulation and a large number
of visual targets. Second, we record a new dataset for this
challenging task (MPII-SSVEP) and we make it publicly
available (at: https://www.mpi-inf.mpg.de/MPII-SSVEP) to

https://www.mpi-inf.mpg.de/MPII-SSVEP


facilitate future algorithm development and evaluation by
the research community. Third, we compare different deep
learning architectures for a 43-key classification task based
on SSVEP responses and propose SSVEPNet, a new method
based on convolutional LSTMs that significantly outperforms
the state of the art. While there is still room for improvement
in terms of performance at this stage, as the first work on
SSVEP-based interaction using high frequency stimulation,
this study paves the way for an exciting new research direc-
tion and opens up a variety of opportunities for advanced
Brain-Computer Interaction (BCI) paradigms that rely on
unobtrusive and highly expressive SSVEP-based input.

II. THE MPII-SSVEP DATASET

One of the most important issues for SSVEP-based inter-
action is the stimulation frequency. Low frequency stimu-
lation, as widely studied in prior research, produces a clear
SSVEP response, but it is visually intrusive. In contrast, high
frequency stimulation is more visually friendly and comfort-
able, but the corresponding SSVEP signals are more difficult
to identify and recognize. Given that there is no existing
dataset for SSVEP with high frequency visual stimulation
and a large number of targets, we collected our own high-
frequency dataset.

Specifically, we recorded three frequency ranges as shown
in Tab. I with three frequency intervals. The first range was
from 30Hz to 34.2Hz with a 0.1Hz difference; the second
range was from 30Hz to 42.6Hz with a 0.3Hz difference;
and the final range was from 30Hz to 69.8Hz with a
0.8Hz difference (with a gap from 46Hz to 54Hz to avoid
overlapping with the 50 Hz noise [15]).

These three frequency ranges were designed to study
the trade-off between frequency range and difference. For
instance, while the first range with the lowest frequencies
should induce the strongest SSVEP, it has the smallest
frequency difference, which in turn makes it difficult to
classify. However, the small difference in the first range is
necessary, for it allows for frequency assignment to a large
number of targets given a specific frequency range.

In addition to frequency encoding, each target was as-
signed a phase ranging from 0 to 1.75π with a difference
of 0.35π . This setting followed the previous design practice
in [12]. The stimulus flickering pattern was implemented
using the frequency and phase approximation approach [13],
which generates a sequence s of frequency f and phase φ

as follows:

s( f ,φ , i) = square[2π f (i/Re f reshRate)+φ ] (1)

TABLE I
DIFFERENT FREQUENCY ASSIGNMENT STRATEGIES.

Range Difference Gap in Assignment
30Hz to 34.2Hz 0.1Hz No gap
30Hz to 42.6Hz 0.3Hz No gap
30Hz to 69.8Hz 0.8Hz 46Hz to 54Hz

where square creates a 50% duty cycle square wave with
levels 0 and 1, i is the frame index and Re f reshRate is
the refresh rate of the screen. This approach can generate
frequencies up to half of the screen refresh rate. Additionally,
since trial length represents a compromise between speed
and classification accuracy [15], we chose a trial length of
2 seconds as an average of the recently used trial lengths in
SSVEP systems (5 seconds in [6], and 0.5 second in [12]).

A. Keyboard Layout

To record the data, we developed an offline BCI speller.
We used a simplified virtual QWERTY-based keyboard that
consisted of 43 targets, including 26 letter keys, 10 digit
keys, three control keys (DEL, ENT, and SPACE), and
four symbol keys (",", ".", "?", "!"). A screenshot of the
interface is shown in Fig. 2. Each letter and digit key was
110x110 pixels (3.1x3.1 cm2) and the horizontal and vertical
distances between keys were 40 pixels. To fit the interface on
our monitor (approximately 54x30cm2), our target size was
slightly smaller than that of the 40-target interface in [12],
since we arranged more targets in the horizontal direction.
The widths of the DEL, ENT and SPACE keys (210 , 187,
770 pixels, i.e. 5.9cm, 5.2cm, 21.7cm, respectively) were
relatively larger than those of the other keys to resemble
the QWERTY keyboard layout.

The interface had a grey background (RGB: 127.5, 127.5,
127.5). The perceived flickering was the result of alternating
the targets’ color between light green (RGB: 223, 252, 174)
and dark blue (RGB: 13, 1, 71). These colors were deter-
mined according to [14], which suggested that blue/green
stimulus is the least provocative color.

B. Recording Procedure

Our experiment consisted of three conditions, one for each
frequency range. There were 10 repetitions in each condition
and each repetition contained 43 trials when participants
fixated at the 43 targets. Each trial lasted for two seconds.
Throughout the trial, all targets were flickering and the
participants were instructed to only look at a designated
target with a unique frequency. Therefore, there were 10
trials in total for each participant for each frequency.

Fig. 2. Screenshot of the virtual keyboard used in our experiment with
the red frame indicating the next target. Each target had a height of 3.1cm.
The widths of the DEL, ENT and SPACE keys were 5.9cm, 5.2cm 21.7cm,
respectively. All other targets had a width of 3.1cm.



Before the actual recording of each trial, we used a red
frame to indicate the designated target for the participant
to fixate on during the trial (see Fig. 2). To allow for a
comfortable pace and sufficient time for the participant to
look for the target, we instructed participants to initiate the
trial by pressing the SPACE key on a physical keyboard. We
encouraged participants to take short breaks at will to avoid
eye fatigue, by simply not pressing the SPACE key to start
the next trial. Also, we introduced a five-minute break after
the completion of half of the total number of trials.

Given that the key sizes were not all the same in the
virtual keyboard, key size and location may introduce a bias
for SSVEP response. To minimize the biases, we randomly
shuffled the 43 frequencies and phases and assigned them to
different locations on the virtual keyboard in each repetition.
In addition, to avoid learning effects in the experiment, the
43 frequencies were randomly ordered in each repetition.
Likewise, we also randomly changed the order of the three
frequency ranges for different participants. Randomizing the
frequency, phrase, and trial, on the other hand, can allow our
network to learn from more diverse data and be more robust
to different locations and sizes. A graphical representation
of the experiment order is shown in Fig. 3.

The experiment was approved by the ethical review board
of the department of computer sciences in Saarland Univer-
sity and participants were asked to sign a consent form with
detailed explanation of the experiment and potential risks.
We did not proceed with the experiment if a participant was
concerned that he/she had or might have a history of seizures,
migraines, or light sensitivity. Participants were informed that
they could stop the experiment if they felt discomfort.

C. Participants

We recruited 20 participants through university mailing
lists (seven female), aged from 23-45 years (mean=28),
from different nationalities, most of whom are computer
science students. After agreeing to participate and signing
the informed consent form, participants were asked to fill

Recording for Participant i

Range 1 Range 2 Range 3

Repetition 1 ...

Freq 1 Freq 2 ... Freq 43

Repetition 2 Repetition 3 ...

...

Fig. 3. Illustration of our experimental protocol. Each participant (20
participants) was asked to look at keys on an extended alphanumeric
keyboard flickering in three frequency ranges. 10 repetitions were performed
for each range (as previously used in [7]), each consisting of 43 individual
frequencies. Each trial lasted for two seconds (i.e. 1000 time samples).

in a small questionnaire regarding demographic information.
Participants were then assisted to put on the EEG head
cap and were instructed to avoid unnecessary movements
as much as possible during the recording and to fixate on
the red frame-indicated target. Participants on average sat
at a distance of approximately 60cm from the screen. The
experiment was conducted in a quiet room with dimmed light
and no electromagnetic shielding.

D. Apparatus

EEG data were collected using the 32-channel Mobita
portable battery operated amplifier (by TMSi, Enschede, The
Netherlands), with a sampling rate of 500Hz. The device
has no direct way to measure impedance of electrodes;
therefore, we visually inspected the quality of signal before
experiment recording. The device uses unipolar recording
where the reference is the average of all connected unipolar
electrodes. The device has a wristband ground, which needs
to be in good contact to avoid the 50Hz noise [15]. The
TMSi MATLAB interface was used to acquire data and
was integrated with the stimulus interface. The recordings
were logged with time annotations of trials’ start and end.
Channels were located according to the international 10–20
electrode system. The stimulus interface was implemented
using Matlab 2017b and Psychophysics Toolbox Version 3,
and shown on a ViewSonic XG2530 25-Inch LED monitor
with adaptable refresh rate up to 144Hz and a pixel resolu-
tion of 1920x1080. This toolbox allows for synchronization
between refresh rate and color flickering and thus ensures
a correct implementation of Eq(1). The experiment was
performed on a computer with Intel Xeon E5-1620 V2 3.70
GHz processor, and NVIDIA K2000 1GB graphics card.

III. SSVEPNET ARCHITECTURE

The architecture of our proposed SSVEPNet for target dis-
crimination is shown in Fig. 4. It consists of two layers of 1D
convolution and maxpooling for low-level feature extraction,
and five LSTM layers to extract temporal characteristics of
the SSVEP patterns. Given that dense layers can introduce
a large number of weights, we only use one dense layer for
classification with softmax to keep our model light and avoid
over-fitting. For the same reason, we apply a dropout layer
after each pooling layer and each LSTM layer. After the
last LSTM layer, we flatten the hidden states of the whole
sequence, and feed them to the last dense layer as the last
hidden state would not be an enough representation of the
whole sequence. We use categorical cross-entropy in the loss
function and train the network with Adam optimizer. We
use early stopping of training as a regularization method by
monitoring the validation accuracy.

Each of our training samples comprises the multi-channel
EEG signals in a two-second trial, when a participant is
looking at a particular key that flickers at a certain frequency.
The training set contains samples from multiple participants
and we aim to build a user-independent model for SSVEP
pattern classification. In our performance evaluation section,
we examine different variants of the proposed architecture
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Fig. 4. The architecture of SSVEPNet, which consists of two convolutional layers (with ReLU activations), five LSTMs layers and a dense layer
(with Softmax activation). Convolution filters are indicated as Width x Channels and the hidden size of the LSTM is indicated above the LSTM layers.
Additionally, the output size of each operation is indicated in the corresponding box.

with different numbers of LSTM and convolution layers and
compare the performance of 1D and 2D convolutions.

IV. EXPERIMENTS

We conducted several experiments to evaluate the per-
formance of the proposed method. In the following, we
first describe the EEG signal processing procedure, then
demonstrate the training setup of SSVEPNet, and finally we
describe the examined baseline models.

A. EEG Signal Preprocessing

Trials were extracted and labelled according to the annota-
tions done by the recording and the interface programs with
a 150ms delay to account for visual system latency delay [8].
We used a notch filter (between 48Hz and 52Hz) to process
each trial to filter out the 50Hz noise [15]. For the deep
learning models, each channel in the trial was normalized by
removing the mean and dividing by the standard deviation
of that channel. Following the previous practise, we used 12
channels (CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz,
O2) that cover the most important channels for SSVEP in
the occipital and parietal lobes [16]. All signal preprocessing
was done on MATLAB.

B. Training of SSVEPNET

Regarding implementation details of our network, we
used Adam optimizer (β1=0.9 and β2=0.999), dropout (drop
probability=0.4), and L2 regularization (0.005) in the last
dense layer. We set the learning rate to 0.001 and the patience
parameter in early stopping to 5 epochs. Models were imple-
mented in Keras with TensorFlow backend. The dataset was
split into training, validation, and test sets with percentages
70%, 10%, and 20% respectively, where the selection of
hyperparameters was based on validation performance.

C. Baselines

We compared SSVEPNet to other potential architectures
suggested in the related work. The first architecture is the
Compact-CNN [16] which is a 2D CNN consisting of a
normal convolution, a depth-wise convolution, and a sep-
arable convolution. Due to the suitability for the size of
our training data, we also compared with another simple
CNN architecture [4], which we refer to as Shallow CNN.

It contains a 1D convolution with 1D maxpooling and batch
norm, followed by a dense layer and a Softmax layer.

Additionally, we compared against CCA and combined-
CCA as widely used SSVEP decoding methods. CCA com-
putes the correlation between two multidimensional variables
X and Y by finding weights Wx, Wy that maximize the
correlation between the projections XTWX , Y TWy [10]. It
measures the canonical correlation between multi-channel
EEG signals and a set of reference (sines and cosines)
signals with different stimuli frequencies and considers the
one with maximal correlation as the SSVEP frequency [10].
While CCA requires no learning or supervision, it may not
produce optimal results due to the use of artificial references.
In contrast, the combined-CCA model [7] leverages the
collected signals from a number of trials to form a more
realistic reference.

V. PERFORMANCE EVALUATION

In this section, we report the performance of SSVEPNet
against the examined baselines, and answer key questions
regarding high frequency stimulation, including the suitable
frequency assignment strategy for a large number of targets
and the appropriate deep learning architecture and parameters
for the classification task.

A. Performance of Frequency Assignment Strategies

Fig. 5 shows the performance comparison of SSVEPNet
against CCA and combined-CCA in the classification of the
three studied frequency ranges. Most importantly, we see
that the lowest frequency range with the smallest frequency
difference (0.1Hz) is the most suitable frequency assignment
strategy. Comparison within the same classification method
indicates that the use of "Range 1" yielded the highest
accuracy, followed by that of "Range 2" and "Range 3".
Specifically, SSVEPNet achieved a classification accuracy of
31% for "Range 1" (30Hz-34.2Hz), 4% for "Range 2" (30Hz-
42.6Hz), and 3% for "Range 3" (30Hz-69.8Hz). It is worth
noting that the difference in accuracy between "Range 2" and
"Range 3" is relatively modest and significantly lower than
that between "Range 1" and the others, meaning that using
frequencies ranging from 30Hz-42.6Hz and 30Hz-69.8Hz
for SSVEP-based interaction can be similarly difficult. This
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Fig. 5. A comparison between the classification accuracy of SSVEPNet
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the three frequency ranges. Error bars for CCA and Combined-CCA indicate
the standard deviation of accuracy across all participants, while training of
SSVEPNet is performed using cross-participant concatenation of data.

result implies that the use of a relatively lower frequency
that can produce stronger SSVEP responses is still more
preferable, even though it results in a smaller frequency
difference among different targets. This can be a useful
guideline to identify the trade-off between frequency range
and difference.

Our comparison demonstrates that SSVEPNet yields the
best performance across different frequency assignment
strategies. In particular, it gives a significantly higher accu-
racy than CCA and combined-CCA in "Range 1". Although
there is still much room for improvement, our method is
promising and outperforms the chance level (only 2.3%) and
the state of the art methods.

B. Ablation Study

Given the above results, this section focuses on "Range 1"
to further investigate the model architecture and parameters,
such as different depths and layer types. Tab. II shows
the performances. The first four rows give the results of
LSTMs with different depths, whose hidden states of each
step in the whole sequence are flattened and fed to one dense
layer. The accuracy increased with the increase of depth,
ranging from 18.6% (1 Layer) to 26.7% (5 Layers), and
it saturated after that. Interestingly, applying one and two
additional convolution layers at the feature extraction stage
before the five LSTM layers further increased accuracy to
29.4% and 31%, respectively (fifth and sixth (SSVEPNet)
rows in Tab. II).

Moreover, the last two rows in Tab. II show the accuracy
of the studied Compact-CNN and Shallow-CNN. However,
neither of these models could achieve comparable results as
LSTMs. The Compact-CNN network yielded a low accu-
racy (3.6%). We also noticed that the training accuracy of
Compact-CNN converged at a relatively low value compared
with those of the LSTMs. Although the training accuracy of
the Shadow CNN reached a higher value than that of the
Compact-CNN, it still had a low accuracy (4.2%). This result
implies that LSTMs can be a better fit to process SSVEP
signals compared with CNN.

TABLE II
PERFORMANCE OF DIFFERENT VARIANTS OF DEEP LEARNING MODELS.

Model Description Accuracy
3 Layers LSTM (size: 100,50,10) 18.6%
4 Layers LSTM (size: 100,50,10,5) 23.3%
5 Layers LSTM (size: 100,50,20,10,5) 26.7%
6 Layers LSTM (size: 100,50,20,10,5,3) 26.3%
1D conv + 5 Layers LSTM 29.4%
SSVEPNet 31%
Compact-CNN (2D convolution) [16] 3.6%
Shallow CNN (1D convolution) [4] 4.2%

VI. DISCUSSION

Our work represents the first study to exploit high-
frequency stimulation for SSVEP-based desktop interaction
with a large number of targets. We evaluated three fre-
quency assignment strategies and our experiment results
suggest that the relative lower frequency range with a smaller
frequency difference is the most suitable strategy in our
setting. Therefore, we suggest that future related studies
should apply frequencies from 30Hz-34.2Hz for a task with
a similar number of targets (43 in our case). To facilitate
future research on this challenging task, we make our dataset
publicly available.

In addition, we proposed SSVEPNet, a novel Conv-LSTM
architecture, to identify gaze target based on SSVEP re-
sponses. Our method significantly outperforms the state-of-
the-art CCA as well as CNN methods.

VII. CONCLUSION

This paper reports the first study on SSVEP-based dis-
crimination of a large number of on-screen targets and high-
frequency visual stimulation. We proposed SSVEPNet, a
Conv-LSTM network, to discriminate the SSVEP patterns
of 43 keys on a on-screen virtual keyboard. Experimental
results on a newly collected dataset show that discrimination
difficulty increases significantly with increasing stimulation
frequency. That is, given the same starting frequency, a
relatively narrower frequency range can be more suitable
for such applications than a wider range that covers higher
frequencies. Our method shows promising performance im-
provements on this challenging task of about 25% accuracy
higher than the best performing CCA methods as well as a
CNN-only method. As such, our work makes a significant
step towards more unobtrusive and expressive, and thus more
practically useful, SSVEP-based brain-computer interfaces.
The implication is that convolution can produce suitable
features to capture useful information in SSVEP signals,
however, LSTMs play a critical role to identify the temporal
features to distinguish different SSVEP frequencies. As such,
we also recommend that interested readers can explore the
use of Conv-LSTM for their SSVEP-based applications.

Despite the encouraging results, we see that there is
still room for improvement. Due to the large number of
targets, the neighbouring frequency difference is merely



0.1Hz. Furthermore, the variances of individual differences
and the noise in signals also make our task very challenging.
However, we foresee that there are a few promising solu-
tions. In future, we plan to explore Generative Adversarial
Networks (GANs) [9] on our current dataset to see if this
can better handle the small training data limitation. Besides,
we plan to continue to enlarge our dataset, so that we
can experiment with models with higher capacity or more
complex architectures. We plan to study advanced frequency
assignment strategies for different targets, e.g. to maximize
the frequency difference between physically adjacent targets,
as well as to study the effect of different design parameters,
such as the number of targets and the length of trials.
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